• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imaging dilute contrast materials in small animals using synchrotron light

Zhang, Honglin 29 June 2009
The development of a non-invasive method of visualizing gene expression in larger animals could revolutionize some aspects of gene research by opening up a wider variety of animal systems to explore; some of which may be better models of human systems. Presently, most gene expression studies employ Green Fluorescent Protein (GFP) transfected into the genome of the animal system. For larger animals, an x-ray equivalent of GFP would be desirable due to the high penetrating power of x-rays. A model gene modification system is to use the Sodium (Na) Iodide Symporter (NIS) which will cause the accumulation of iodine in cells which express the NIS. To non-invasively observe the dilute iodine accumulated by the cancer cells transfected with NIS in the head of small animals, such as a rat, two synchrotron-based imaging methods were studied: K-Edge Subtraction (KES) imaging and Fluorescence Subtraction Imaging (FSI).<p> KES needs wide monochromatic x-ray beams at two energies bracketing the K-edge of the contrast agent existing or injected in the tissues. The monochromatic beam in the synchrotron facility normally is prepared by a double crystal monochromator. The appearance of the azimuthal angle (tilt error) in the double crystal monochromator creates intensity variations across the imaging field. This misalignment was studied through another two synchrotron-based imaging methods, Diffraction Enhanced Imaging (DEI) and Multi-Image Radiography (MIR), which show this problem clearly in their processed images. The detailed analysis of the effect of the tilt error, how it affects the resulting images, and how to quantify such an error were presented in the thesis. A post processing method was implemented and the artifacts caused by the improper experimental settings were discussed.<p> With the wide monochromatic beam prepared by the double crystal monochromator, a sequence of KES experiments were done and the detection limit of KES was quantified at a projected amount of 17.5mM-cm iodine in a physical model of a rat head with a radiation dose of 2.65mGy. With the raster scan of the object relative to the monochromatic pencil beam, FSI was studied to obtain higher Signal to Noise Ratio (SNR) for local area and better detection limit compared to KES. The detection limit of FSI was measured as a projected amount of 2.5mM-cm iodine in the same physical rat head with a tolerable radiation dose of 24mGy. According to the comparison of these two imaging techniques with references to imaging time and area, radiation dose, spatial resolution, and SNR, it was concluded that these two imaging techniques can be used complementarily in imaging dilute contrast material. Due to the short imaging time and large imaging area, KES is used first to provide a global view of the object, locate the area of interest, do the preliminary diagnosis, and decide whether the further FSI is necessary. Due to its high SNR for the dilute sample, FSI can be used when the area of interest is known. The combination of these two imaging techniques will be very promising and powerful. To facilitate the comparison of KES and FSI, a quality factor was developed to evaluate the performance of the imaging system.<p> The measured detection limits in our experiments are far beyond the thyroidal iodine concentration of a rat (around 1mM). To further improve the performance of KES, a bent Laue crystal monochromator was designed to do the simultaneous iodine KES imaging which overcomes the artifacts in the iodine image caused by the temporal difference for a single set of images. The designed monochromator can provide two separated x-ray beams bracketing the K-edge of iodine at the same time with a very high spatial resolution which is only depends on the source size, a very high energy resolution which can almost compete with that of the double crystal monochromator, and an acceptable photon flux.
2

Imaging dilute contrast materials in small animals using synchrotron light

Zhang, Honglin 29 June 2009 (has links)
The development of a non-invasive method of visualizing gene expression in larger animals could revolutionize some aspects of gene research by opening up a wider variety of animal systems to explore; some of which may be better models of human systems. Presently, most gene expression studies employ Green Fluorescent Protein (GFP) transfected into the genome of the animal system. For larger animals, an x-ray equivalent of GFP would be desirable due to the high penetrating power of x-rays. A model gene modification system is to use the Sodium (Na) Iodide Symporter (NIS) which will cause the accumulation of iodine in cells which express the NIS. To non-invasively observe the dilute iodine accumulated by the cancer cells transfected with NIS in the head of small animals, such as a rat, two synchrotron-based imaging methods were studied: K-Edge Subtraction (KES) imaging and Fluorescence Subtraction Imaging (FSI).<p> KES needs wide monochromatic x-ray beams at two energies bracketing the K-edge of the contrast agent existing or injected in the tissues. The monochromatic beam in the synchrotron facility normally is prepared by a double crystal monochromator. The appearance of the azimuthal angle (tilt error) in the double crystal monochromator creates intensity variations across the imaging field. This misalignment was studied through another two synchrotron-based imaging methods, Diffraction Enhanced Imaging (DEI) and Multi-Image Radiography (MIR), which show this problem clearly in their processed images. The detailed analysis of the effect of the tilt error, how it affects the resulting images, and how to quantify such an error were presented in the thesis. A post processing method was implemented and the artifacts caused by the improper experimental settings were discussed.<p> With the wide monochromatic beam prepared by the double crystal monochromator, a sequence of KES experiments were done and the detection limit of KES was quantified at a projected amount of 17.5mM-cm iodine in a physical model of a rat head with a radiation dose of 2.65mGy. With the raster scan of the object relative to the monochromatic pencil beam, FSI was studied to obtain higher Signal to Noise Ratio (SNR) for local area and better detection limit compared to KES. The detection limit of FSI was measured as a projected amount of 2.5mM-cm iodine in the same physical rat head with a tolerable radiation dose of 24mGy. According to the comparison of these two imaging techniques with references to imaging time and area, radiation dose, spatial resolution, and SNR, it was concluded that these two imaging techniques can be used complementarily in imaging dilute contrast material. Due to the short imaging time and large imaging area, KES is used first to provide a global view of the object, locate the area of interest, do the preliminary diagnosis, and decide whether the further FSI is necessary. Due to its high SNR for the dilute sample, FSI can be used when the area of interest is known. The combination of these two imaging techniques will be very promising and powerful. To facilitate the comparison of KES and FSI, a quality factor was developed to evaluate the performance of the imaging system.<p> The measured detection limits in our experiments are far beyond the thyroidal iodine concentration of a rat (around 1mM). To further improve the performance of KES, a bent Laue crystal monochromator was designed to do the simultaneous iodine KES imaging which overcomes the artifacts in the iodine image caused by the temporal difference for a single set of images. The designed monochromator can provide two separated x-ray beams bracketing the K-edge of iodine at the same time with a very high spatial resolution which is only depends on the source size, a very high energy resolution which can almost compete with that of the double crystal monochromator, and an acceptable photon flux.
3

In situ characterization by X-ray synchrotron imaging of the solidification of silicon for the photovoltaic applications : control of the grain structure and interaction with the defects and the impurities / Caractérisation in situ par imagerie X synchrotron de la solidification du silicium pour les applications photovoltaïques : contôle de la structure de grains et interactions avec les défauts et les impuretés

Riberi-Béridot, Thècle 22 November 2017 (has links)
Au cours de cette thèse, nous avons étudié in situ la solidification du silicium à l’aide de l'imagerie X-synchrotron. Les deux techniques utilisées lors de la solidification sont la radiographie et la diffraction de Bragg, elles permettent de caractériser: la dynamique des mécanismes de croissance, la cinétique de croissance, la nucléation et la compétition de grains, la déformation du réseau cristallin et les champs de contraintes liés aux dislocations. Ces observations sont combinées avec des caractérisations ex situ pour étudier l'orientation cristallographique, les déformations du réseau cristallin ainsi que les concentrations d'impuretés légères telles que le carbone et l'oxygène.La complémentarité de ces techniques permet d'étudier et de mieux comprendre : les phénomènes physiques liés à la formation de la structure de grain finale. Les résultats concernant la cinétique de croissance de l'interface solide-liquide et des facettes {111}, l'établissement de la structure de grain, l'importance du maclage, l'effet des impuretés légères, le champ de contrainte lié à la croissance et la compétition de grains et les dislocations sont discutés dans le manuscrit. / During this thesis, we studied in situ the solidification of silicon with X-synchrotron imaging. The two techniques used during solidification are radiography and Bragg diffraction and they allow characterizing: dynamic growth mechanisms, growth kinetics, grain nucleation and competition, lattice deformation and dislocation related strain fields. These observations are combined with ex situ characterizations to study the crystallographic orientation, the deformations of the crystal lattice as well as the concentrations of light impurities such as carbon and oxygen. The complementarity of these techniques makes it possible to study and to better understand: the physical phenomena related to the formation of the final grain structure. Results concerning the growth kinetics of the solid-liquid interface and of the {111} facets, the establishment of the grain structure, the importance of twinning, the effect of light impurities, the strain field related to growth and grain competition and dislocations are discussed in the manuscript.
4

Etude de l'effect thermoélectrique magnétique en solidification directionnelle d'alliages Al-Cu. / Study on the thermoelectric magnetic effect in directional solidification of Al-Cu alloy

Wang, Jiang 18 October 2013 (has links)
Nous étudions l'effet thermo-électrique et les phénomènes qui en résultent, forces et les courants thermoélectriques (TEC) sous l'action d'un champ magnétique externe imposé lors de la solidification d'alliages métalliques. Nous avons utilisé des simulations numériques, des observations directes et des examens de laboratoire. L'interaction entre les courants thermo-électriques et le champ magnétique externe lors de la solidification se produit des forces électromagnétiques et donc un écoulement du métal liquide. Le résultat est nommé effet magnétique thermoélectrique (TEME). Les formulations de TEC, les forces et les équations gouvernant les écoulements TEM sont donnés. Afin de mieux prouver l'existence de la TEME, des expériences par méthode d'imagerie à rayons X menées au synchrtron ont été utilisées pour observer in-situ et en temps réel l'action directe des forces et les mouvements TEM pendant la solidification directionnelle des alliages Al-Cu. Nous avons montré la cohérence raisonnable entre les calculs analytiques et des simulations numériques qui ont exécuté avec les mêmes conditions de traitement. En outre, la capacité des écoulements thermo-électriques à influer sur la microstructure lors de la solidification directionnelle sont expérimentalement évaluées dans les autres cas en réalité. La solidification directionnelle d'une seule phase de formation des alliages Al-Cu sous divers champs magnétiques montre que les écoulements TEM sont capables de modifier la forme de l'interface liquide-solide conduisant à des morphologies différentes. L'effet le plus intense se produit dans différents champs magnétiques pour différentes morphologies, en effet, le champ magnétique élevé est nécessaire pour la morphologie a une plus petite longueur typique. Ceci est en accord avec le comportement des vitesses de TEM qui varient avec les champs magnétiques imposés ainsi que les différentes échelles de longueur typique. Cette variation est confirmée par des simulations numériques 3D. Nous montrons que les dendrites primaires et à l'avant de la phase eutectique, peuvent être modifiés par les mouvements TEM et les forces de TEM dans le solide pour améliorer la croissance de la phase de Al2Cu facettes primaire pendant la solidification des Al-40wt%Cu hypereutectiques. Le mécanisme de renforcement de la croissance de la phase facettes Al2Cu est confirmé par la transmission électronique observation au microscope, et la raison de la formation de la structure de croissance de couple de Al-26wt% Cu alliages est vérifiée par le test de l'analyse thermique différentielle. Ainsi, nous pouvons affirmer que le champ magnétique élevé facilite la formation de la structure de la croissance de couple pour hypoeutectiques alliages Al-Cu, et favorise la croissance de la phase Al2Cu primaire pour hypereutectiques Al-Cu alliages. / We have investigated the thermoelectric magnetic (TEM) forces and flows resulting from the interaction between the internal thermoelectric currents (TEC) and the imposed external magnetic field during solidification. Numerical simulations, direct observations and experimental examinations were undertaken. As the natural phenomenon, TEC was discovered almost 200 years ago, therefore, our introduction begins from then on. It is shown that the interaction between TEC and external magnetic field during solidification in the cont put forth new interesting phenomena in the context of a rising field named Electromagnetic Processing of Materials. After that, it is discussed how the TEC appear and the TEM effect (TEME, referring to both TEM forces and flows) behaves at the liquid-solid interface in directional solidification under external magnetic field. Meanwhile, formulations of TEC, TEM forces and flows are given, and numerical simulations of TEME are performed to visually display the TEM forces and flows. In order to further prove the existence of TEME, in situ synchrotron X-ray imaging method was used to observe the direct resultant of TEM forces and flows during directionally solidifying the Al-Cu alloys. The observations show reasonable consistency with the analytical calculations and numerical simulations performed with the same process conditions. Except confirmation the existence of TEME, its abilities to affect the microstructure during directional solidification are experimentally investigated in the more realistic cases. The single phase forming Al-Cu alloys are directionally solidified under various magnetic fields, which shows that TEM flows are capable to modify the shape of liquid-solid interface, and the most intensive affect occurs under different magnetic fields for different interface morphologies. Indeed, the smaller the typical length of the morphology is the higher the magnetic field is needed. This agrees with the estimating regulation of the velocity of TEM flows changing with magnetic fields for different typical length scales, and is confirmed by 3D numerical simulations. Directional solidification of multiphase forming Al-Cu alloys under various magnetic fields shows that the mushy zone length (distance between the front of primary dendrites and eutectic phases) varies with the magnetic fields, which can be attributed to the redistribution of rejected solutes by TEM flows. In addition, apparent enhanced growth of the primary faceted Al2Cu phase is founded when Al-40wt%Cu alloys are solidified under sufficient high magnetic fields, this should be ascribed to the TEM forces acting on the solid because strains are able to lead the formation of defects and thus benefit to the growth of faceted phase. This is confirmed by comparison of the dislocations in samples solidified without and with a 10T magnetic field via transmission electron microscopy observation. In another aspect, an almost entire couple growth structure is achieved when Al-26wt%Cu alloys are directionally solidified under a 4T magnetic field, which can be explained by the effect of high magnetic field on changing the nucleation temperature and growth velocity of each phase. Moreover, the differential thermal analysis test on the nucleation temperature of both α-Al and eutectic phases verified this explanation. Therefore, we conclude that high magnetic field facilitates the formation of couple growth structure for hypoeutectic Al-Cu alloys, reversely, enhances the growth of primary dendrite for hypereutectic Al-Cu alloys.
5

MECHANICAL BEHAVIORS OF BIOMATERIALS OVER A WIDE RANGE OF LOADING RATES

Xuedong Zhai (8102429) 10 December 2019 (has links)
<div>The mechanical behaviors of different kinds of biological tissues, including muscle tissues, cortical bones, cancellous bones and skulls, were studied under various loading conditions to investigate their strain-rate sensitivities and loading-direction dependencies. Specifically, the compressive mechanical behaviors of porcine muscle were studied at quasi-static (<1/s) and intermediate (1/s─10^2/s) strain rates. Both the compressive and tensile mechanical behaviors of human muscle were investigated at quasi-static and intermediate strain rates. The effect of strain-rate and loading-direction on the compressive mechanical behaviors of human frontal skulls, with its entire sandwich structure intact, were also studied at quasi-static, intermediate and high (10^2/s─10^3/s) strain rates. The fracture behaviors of porcine cortical bone and cancellous bone were investigated at both quasi-static (0.01mm/s) and dynamic (~6.1 m/s) loading rates, with the entire failure process visualized, in real-time, using the phase contrast imaging technique. Research effort was also focused on studying the dynamic fracture behaviors, in terms of fracture initiation toughness and crack-growth resistance curve (R-curve), of porcine cortical bone in three loading directions: in-plane transverse, out-of-plane transverse and in-plane longitudinal. A hydraulic material testing system (MTS) was used to load all the biological tissues at quasi-static and intermediate loading rates. Experiments at high loading rates were performed on regular or modified Kolsky bars. Tomography of bone specimens was also performed to help understand their microstructures and obtain the basic material properties before mechanical characterizations. Experimental results found that both porcine muscle and human muscle exhibited non-linear and strain-rate dependent mechanical behaviors in the range from quasi-static (10^(-2)/s─1/s) to intermediate (1/s─10^2/s) loading rates. The porcine muscle showed no significant difference in the stress-strain curve between the along-fiber and transverse-to-fiber orientation, while it was found the human muscle was stiffer and stronger along fiber direction in tension than transverse-to fiber direction in compression. The human frontal skulls exhibited a highly loading-direction dependent mechanical behavior: higher ultimate strength, with an increasing ratio of 2, and higher elastic modulus, with an increasing ratio of 3, were found in tangential loading direction when compared with those in the radial direction. A transition from quasi-ductile to brittle compressive mechanical behaviors of human frontal skulls was also observed as loading rate increased from quasi-static to dynamic, as the elastic modulus was increased by factors of 4 and 2.5 in the radial and tangential loading directions, respectively. Experimental results also suggested that the strength in the radial direction was mainly depended on the diploë porosity while the diploë layer ratio played the predominant role in the tangential direction. For the fracture behaviors of bones, straight-through crack paths were observed in both the in-plane longitudinal cortical bone specimens and cancellous bone specimens, while the cracks were highly tortuous in the in-plane transverse cortical bone specimens. Although the extent of toughening mechanisms at dynamic loading rate was comparatively diminished, crack deflections and twists at osteon cement lines were still observed in the transversely oriented cortical bone specimens at not only quasi-static loading rate but also dynamic loading rate. The locations of fracture initiations were found statistical independent on the bone type, while the propagation direction of incipient crack was significantly dependent on the loading direction in cortical bone and largely varied among different types of bones (cortical bone and cancellous bone). In addition, the crack propagation velocities were dependent on crack extension over the entire crack path for all the three loading directions while the initial velocity for in-plane direction was lower than the other two directions. Both the cortical bone and cancellous bone exhibited higher fracture initiation toughness and steeper R-curves at the quasi-static loading rate than the dynamic loading rate. For cortical bone at a dynamic loading rate (5.4 m/s), the R-curves were steepest, and the crack surfaces were most tortuous in the in-plane transverse direction while highly smooth crack paths and slowly growing R-curves were found in the in-plane longitudinal direction, suggesting an overall transition from brittle to ductile-like fracture behaviors as the osteon orientation varies from in-plane longitudinal to out-of-plane transverse, and to in-plane transverse eventually.</div>

Page generated in 0.1078 seconds