• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 28
  • 26
  • 8
  • 5
  • 4
  • 1
  • Tagged with
  • 229
  • 229
  • 87
  • 81
  • 50
  • 41
  • 40
  • 30
  • 29
  • 29
  • 27
  • 22
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Determination of residual stress in engineering components using diffraction techniques

Browne, Peter Anthony January 2000 (has links)
No description available.
42

Study of Solid State Photocatalysts and other Energy Materials using Synchrotron Radiation

2012 September 1900 (has links)
This work presents a spectroscopic and theoretical study of several energy materials using synchrotron-based techniques. Two classes of materials are studied: solids that have reported photocatalytic properties, and lithium compounds that are thought to form during the cycling of modern battery electrodes. An overview of synchrotron soft X-ray spectroscopic techniques is presented, along with the theory and procedures associated with performing such measurements. These measurements are compared to density functional theory (DFT) calculations, as implemented by the WIEN2k package, along with a description of the DFT method. Calculated electronic structure is shown to be a useful aid in interpreting the results of X-ray emission and X-ray near-edge absorption measurements (XES and XANES), allowing conclusions about the physical structure and properties of the materials to be reached. Two photocatalytic systems are outlined, the first of which is a solid solution of GaN and ZnO (GaN:ZnO) that exhibits an unexpected reduction in band gap. By carefully comparing common hybridized features from O, N and Zn core emission lines, a binding energy picture of the valence and conduction bands of GaN:ZnO is constructed, allowing its band gap reduction to be described as a consequence of heterojunctions between predominantly GaN and ZnO regions within the solid solution. This description attempts to resolve controversy in the literature regarding the origin of the band gap reduction, as well as to rule out a hypothesized oxynitride superlattice structure as the explanation. The second photocatalytic system studied is a carbon nitride derivative, poly(triazine imide) (PTI) that displays high crystallinity and that could be very inexpensive to produce due to its elemental abundance. Through resonant excitation, two inequivalent N sites in PTI can be probed by X-ray emission spectroscopy, indicating the material is not a conjugated polymer like other reported carbon nitrides. The band gap of the system is observed to decrease in response to disordered Li loading, an e ect that is con rmed by DFT calculation. Several potential disorder models of the Li loading of PTI are investigated with DFT force minimization in order to choose a structural candidate capable of producing calculated X-ray spectra that agree with our measurements. The presented lithium study attempts to use a modern soft X-ray absorption facility to characterize the Li surface by-products inherent to the charge-discharge cycling of a battery electrode. A survey of potential Li compounds was performed using Li K-edge XANES will be compared to DFT calculations and X-ray Raman Scattering measurements performed by collaborators in the future. Correlating measurements of the survey compounds with charge-cycled electrode measurements will be an area for future work.
43

Short pulse x-ray generation in synchrotron radiation sources

Martin, Ian Peter Stephen January 2011 (has links)
This thesis describes an investigation into the performance of different schemes for generating short x-rays pulses via synchrotron radiation emission. A review is given of the methods that have been previously proposed for this task. From this review, three leading schemes are selected for in-depth investigations, each of which explores the boundary of what is presently achievable in accelerator-based light sources. The first scheme generates short x-ray pulses by operating an electron storage ring in a quasi-isochronous state using a ‘low-alpha’ lattice. High and low emittance lattices are developed, studied through simulation and then implemented on the Diamond storage ring. Beam dynamics and bunch length measurements are presented for a variety of machine conditions, and an assessment is made of the minimum practically achievable bunch length for stable user operation. Radiation pulses of 1 ps r.m.s. are demonstrated using this scheme. The second and third schemes investigate performance limits for a linac-based light source through numerical simulations. The first of these generates ultra-short pulses by passing a highly compressed electron bunch through a long undulator to radiate in the ‘single-spike’ regime. A comparison is made with theoretical predictions for the required electron bunch length to operate in this way, which highlights the need for accurate start-to-end simulations. The final scheme generates ultra-short x-ray pulses through laser manipulation of the electron bunches. The modulated electrons pass through a long undulator with tapered gap, such that only the centre of the modulated portion experiences high free-electron laser (FEL) gain. A method to enhance the FEL output from this scheme using a wavelength filter and grating-compressor is investigated. The sensitivity of the two schemes to jitter sources is determined, and it is demonstrated both schemes are capable of generating GW-level, fully coherent sub-fs soft x-ray pulses. Such pulses would open up the development of time-resolved science to new regimes.
44

Propriétés électroniques et magnétiques sous excitation laser femtoseconde, du Gd monocristallin aux alliages ferrimagnétiques / Electronic and magnetic properties under femtosecond laser excitation, from the Gd single crystal to the ferrimagnetic alloys

Beaulieu, Nathan 29 November 2013 (has links)
Ces travaux de thèse rentrent dans le cadre de l’étude de la dynamique ultra rapide de l’aimantation. Tout d’abord sont présentés des aspects théoriques, puis les aspects expérimentaux de ces expériences. Pour ce faire, nous avons étudié la réponse d’alliages ferrimagnétiques à composition variables à l’aide d’un dispositif de mesure d’effet Kerr résolu en temps, puis dans une seconde partie, la dynamique de l’aimantation et de la bande de valence du gadolinium épitaxié sur tungstène. Dans ce cadre rentre une étude de l’oxydation de ce matériau, limitant dans le temps les études approfondies. Pour finir, il est mis l’accent sur un phénomène contraignant lors des études de dynamique électronique en photoémission, l’effet de charge-espace. Ceci a pour effet de générer des photoélectrons à partir de métaux, à l’aide d’un processus multiphotonique. Nous proposons dans cette partie un modèle théorique expliquant ce phénomène.Ces travaux sont inscrits dans le cadre du développement du synchrotron SOLEIL, pour permettre le développement du FEMTOSLICING, qui permettra prochainement de mesurer des dynamiques rapides résolues en éléments, à une résolution de l’ordre de la centaine de femtosecondes. / Those thesis works are included in the framework of the study of ultrafast magnetization dynamics. First of all I introduce theoretical aspects, then experimental aspects of this kind of experiments.In this aim, we have studied the answer of ferromagnetic alloys of different compositions with a bench of time resolved magneto optical Kerr effect measurement, then in a second part, the magnetization and valence band dynamics of the epitaxial Gadolinium on tungsten. In this framework, we studied the oxidization of the Gd, which limits in the time the studies. In the end, we focus on a disturbing process that happens during the study of electrons dynamics in photoemission, the space charge effect. This can generate photoelectrons from metals, with a multiphotonic process. We propose in this last part a theoretical model to explain this phenomenon.These works are included in the development of SOLEIL synchrotron facility, in order to allow the development of the FEMTOSLICING, that will next allow to perform element resolved experiments within a time resolution of a hundredth of femtoseconds.
45

The orientation of accretion disks and jets in quasars

Down, Emily January 2008 (has links)
All massive nearby galaxies, including our own, host supermassive black holes. Active galactic nuclei (AGN) are seen when such black holes accrete, and when they produce powerful jets of synchrotron-emitting plasma, they are termed radio-loud AGN. The close correlation between black hole mass and galaxy bulge mass in elliptical galaxies indicates that AGN feedback may be the key to the regulation of galaxy formation. It is thus necessary to fully understand the structure of AGN, the way that they are fuelled, and their duty cycle, in order to study the feedback processes and get a clear picture of galaxy formation. In this thesis, independent methods are developed to constrain the accretion disk and radio jet angles to the line of sight. H IX emission from a sub-sample of high-redshift quasars is measured from near-infrared spectroscopy and modelled as sums of different components, including the characteristic double-peaked profile which results from a thin, rotating accretion disk. Comparing the models using Bayesian evidence, almost all quasars were found to have infrared spectra consistent with the presence of a disk. The jet inclination angles of the same set of quasars were constrained by fitting a model, including the effect of Doppler boosting and the receding torus model for dust obscuration, to the radio \ spectral energy distribution. The fitted disk and jet angles correlate strongly, and are consistent with a model in which the radio jets are launched orthogonally to the plane of the accretion disk, as expected if the jet is powered by energy drawn from the spin of the black hole. Both disk and jet angles correlate with the observed linear source size, which is a projection effect; when deprojected using the fitted angles, the distribution of source sizes agrees with a scenario in which the sources expand into the surrounding medium at a constant rate up to ~ 1 Mpc and then shut off, probably as the nuclei become quiescent. The accretion disk angle was found to correlate weakly with the low-frequency radio luminosity, which provides direct, albeit tenuous, evidence for the receding torus model.
46

Characterisation of Group III nitrides using hard X-ray synchrotron radiation

Mudie, Stephen January 2004 (has links)
Abstract not available
47

Photoelectron Spectroscopy on HCl and DCl : Synchrotron Radiation Based Studies of Dissociation Dynamics

Burmeister, Florian January 2003 (has links)
<p>Dissociation dynamics of the ionized molecules HCl and the deuterated system DCl has been studied in gas-phase using synchrotron based photoelectron spectroscopy (PES).</p><p>The inner-valence "(4σ)<sup>-1</sup>" photoionization band for DCl and HCl was recorded using maximum resolution in order to probe an interference pattern between a dissociative and a bound electronic state. For HCl<sup>+</sup>, we clearly observed distorted Fano-type peaks even for modest resolution, whereas for DCl<sup>+</sup>, the pattern was hardly discernible. The observation in HCl<sup>+</sup> has been explained by a coupling between two adiabatic electronic states, where the bound state was populated through non-adiabatic curve-crossing. The nuclear motion of HCl<sup>+</sup> is too fast for the Born-Oppenheimer approximation to be fully valid in this case. Whereas for DCl<sup>+</sup>, with larger reduced mass and therefore slower nuclear motion, the non-adiabatic coupling is less pronounced, and the vibrational progression vanishes.</p><p>A comparative study between PES and threshold photoelectron spectra (TPES) of the inner-valence bands of HCl and DCl has been performed, showing differences in intensities and shapes of the vibrational bands. These differences were attributed to the fact that the sudden approximation, which can be assumed to be valid for PES, is violated in the case of TPES.</p><p>A resonant Auger electron spectroscopy study of HCl and DCl has been performed, which shows an interference pattern between atomic and molecular Auger- and photoelectron channels. The atomic features are associated with ultra-fast dissociation of the molecules, on the same time scale as the Auger decay. The observation shows that the excited molecular system has to be regarded as a superposition of fragmented and molecular states.</p><p>A study of the <i>X</i>-state of HCl<sup>+</sup>, populated via a core-excited state, shows a selective population of the final state. The explanation was shown to be that the magnetic orientation of the core-hole is transferred to the final state of the molecule.</p><p>A setup for data acquisition of Photo-Electron Photo-Ion Photo-Ion COincidence (PEPIPICO) measurements using a Time-Of-Flight (TOF) spectrometer has been developed. A Time-to-Digital Converter (TDC) card has been linked together with the data treatment program Igor as a user interface. Furthermore, the PEPIPICO spectrometer has been characterized to provide a solid basis for the analysis of experimental data.</p>
48

Zirkulardichroismus-Messungen mit Synchrotronstrahlung am BESSY : Möglichkeiten und Grenzen bei der Untersuchung biologischer Proben / Synchrotron radiation circular dichroism measurements at BESSY : potentials and limitations investigating biological samples

Lengefeld, Jan January 2010 (has links)
In dieser Arbeit wurden die Möglichkeiten und Grenzen für Zirkulardichroismus-Messungen mit Synchrotronstrahlung untersucht. Dazu wurde ein Messaufbau für Zirkulardichroismus-Messungen an zwei Strahlrohren am Berliner Elektronenspeicherring für Synchrotronstrahlung eingesetzt, die für Messungen im Bereich des ultravioletten Lichts geeignet sind. Eigenschaften der Strahlrohre und des Messaufbau wurden in einigen wichtigen Punkten mit kommerziellen Zirkulardichroismus-Spektrometern verglichen. Der Schwerpunkt lag auf der Ausdehnung des zugänglichen Wellenlängenbereichs unterhalb von 180 nm zur Untersuchung des Zirkulardichroismus von Proteinen in diesem Bereich. In diesem Bereich ist es nicht nur die Lichtquelle sondern vor allem die Absorption des Lichts durch Wasser, die den Messbereich bei der Messung biologischer Proben in wässriger Lösung einschränkt. Es wurden Bedingungen gefunden, unter denen der Messbereich auf etwa 160 nm, in einigen Fällen bis auf 130 nm ausgedehnt werden konnte. Dazu musste die Pfadlänge deutlich reduziert werden und verschieden Probenküvetten wurden getestet. Der Einfluss der dabei auftretenden Spannungsdoppelbrechung in den Probenküvetten auf das Messsignal konnte mit einem alternativen Messaufbau deutlich reduziert werden. Systematische Fehler im Messsignal und auftretende Strahlenschäden begrenzen jedoch die Zuverlässigkeit der gemessenen Spektren. Bei Proteinfilmen schränkt die Absorption von Wasser den Messbereich kaum ein. Es wurden jedoch meist deutliche Unterschiede zwischen den Spektren von Proteinfilmen und den Spektren von Proteinen in wässriger Lösung festgestellt. Solange diese Unterschiede nicht minimiert werden können, stellen Proteinfilme keine praktikable Alternative zu Messungen in wässriger Lösung dar. / The possibilities and limitations for synchrotron radiation circular dichroism measurements were investigated in this thesis. Therefore an experimental setup to measure circular dichroism was used at two beamlines at the “Berliner Elektronenspeicherring für Synchrotronstrahlung”(BESSY), which were suitable in the ultraviolet range of light. Properties of the beamlines and the experimental setup were compared to those of commercial circular dichroism spectrometer in some important points. The focus was on the extension of the accessible wavelength range below 180 nm, with the aim to investigate the circular dichroism of proteins in that range. It is not only the light source that limits measurements with aqueous solutions in that range, but mainly the absorption of the light by water. Conditions were found under which the wavelength range was extended to about 160 nm, in some cases even to 130 nm. To achieve this, a significant reduction of the pathlength was necessary. Several sample cells were tested for their usability. The effect of birefringence within the sample cells on the circular dichroism signal could be reduced strongly with an alternative experimental setup. However systematic errors in the circular dichroism signal and appearing radiation damage of the proteins limits the reliability of the measured spectra. By using protein films, the light absorption by water is not a problem anymore. However, significant differences between the circular dichroism spectra of protein films and proteins in aqueous solution occurred in most of the cases. Unless these differences can be eliminated, measuring protein films is not an alternative to measurements in aqueous solution.
49

Synchrotron radiation induced fluorescence spectroscopy of gas phase molecules

Álvarez Ruiz, Jesús January 2004 (has links)
A new experimental set-up for gas phase fluorescence studies using synchrotron radiation has been designed and constructed to perform simultaneously total and dispersed fluorescence measurements. Neutral photodissociation of CO has been investigated after excitation with 19-26 eV photons. Fluorescence from 3p 3P, 3p 3S and 3p 1D excited states in carbon was recorded and interpreted by ab initio calculations. The population and dissociation of states belonging to the C and D Rydberg series in CO seem to explain the production of the observed triplet states but not the 3p 1D state. Neutral photodissociation of NO is reported in the 17-26 eV energy range. No known molecular states can account for the collected data. New information regarding the precursor states of the observed neutral dissociation is provided by ab initio calculations. Autoionization of superexcited states in molecular nitrogen is evidenced by strong deviations of the Franck-Condon ratio in the fluorescence of the N2+ B state. Ab initio calculations predict the existence of autoionizing-excited states that may account for some of the observed structures in the 20-46 eV energy range. Selective molecular fluorescence from the npó1Óu+ and npð 1Ðu (n=3-7) Rydberg levels to the E,F 1Óg+ state in H2 was recorded and rotationally analyzed. Vibrational levels of the E,F 1Óg+ state (vEF =0,1,3,6-10) are determined. The predissociation of npð 1Ð+ levels is observed in agreement with the literature. Fragmentation of SF6 was investigated after excitation with 25–80 eV photons. Dispersed fluorescence measurements reveal the emission of S, S+, F and F+ excited atoms. These fragments are produced after single, double and triple excitations as well as direct ionizations and shake-ups in SF6. Photoabsorption and fluorescence yield have been measured in SF5CF3 using 10-30eV photons. The photoabsorption spectrum can be explained in terms of its similarities to those of the SF6 and CF4 molecules. The dispersed and un-dispersed fluorescence resemble those of the CF3X family. Several features suggest the migration of an F atom across the S-C bond that fragments the molecule producing excited CF4. Doubly excited states of H2 have been investigated in the range of 26-60 eV by monitoring Balmer á emission. The experimental data show the already known emission correlated with the fragmentation of the Q1 and Q2 states, and new features which could be attributed to dissociative photoionization and higher lying doubly excited states Qn (n&gt;2) of the hydrogen molecule
50

Free Metal Clusters Studied by Photoelectron Spectroscopy

Andersson, Tomas January 2012 (has links)
Clusters are aggregates of a finite number of atoms or molecules. In the present work, free clusters out of metallic parent materials have been created and studied by synchrotron radiation-based photoelectron spectroscopy. The clusters have been formed and studied in a beam and the electronic structure of the clusters has been investigated. Conclusions have been drawn about the spatial distribution of atoms of different elements in bi-component clusters, about the development of metallicity in small clusters, and about the excitation of plasmons. Bi-component alloy clusters of sodium and potassium and of copper and silver have been produced. The site-sensitivity of the photoelectron spectroscopy technique has allowed us to probe the geometric distribution of the atoms of the constituent elements by comparing the responses from the bulk and surface of the clusters. In both cases, we have found evidence for a surface-segregated structure, with the element with the largest atoms and lowest cohesive energy (potassium and silver, correspondingly) dominating the surface and with a mixed bulk. Small clusters of tin and lead have been probed to investigate the development of metallicity. The difference in screening efficiency between metals and non-metals has been utilized to determine in what size range an aggregate of atoms of these metallic parent materials stops to be metallic. For tin this has been found to occur below ~40 atoms while for lead it happened somewhere below 20-30 atoms. The excitation of bulk and surface plasmons has been studied in clusters of sodium, potassium, magnesium and aluminium, with radii in the nanometer range. The excitation energies have been found to be close to those of the corresponding macroscopic solids. We have also observed spectral features corresponding to multi-quantum plasmon excitation in clusters of Na and K. Such features have in macroscopic solids been interpreted as due to harmonic plasmon excitation. Our observations of features corresponding to the excitation of one bulk and one surface plasmon however suggest the presence of sequential excitation in clusters.

Page generated in 0.0986 seconds