• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Syndepositional fault control on dolomitization of a steep-walled carbonate platform margin, Yates Formation, Rattlesnake Canyon, New Mexico

Simon, Rebekah Elizabeth 02 February 2015 (has links)
Syndepositional deformation features are fundamental components of carbonate platforms both in the subsurface and in seismic-scale field analogs. These deformation features are commonly opening-mode, solution-widened fractures that can evolve into extensional faults, and reactivate frequently through the evolution of the platform. They also have potential to behave as fluid flow conduits from the earliest phases of platform growth through burial and uplift, and can be active during hydrocarbon generation. As such, diagenetic alteration in the margins of these carbonate platforms is often intense, may demonstrate a preferential spatial relationship to the deformation features rather than the depositional fabrics of the strata, and may impact the permeability development of reservoir strata near deformation features. This study focuses on a syndepositional graben known as the Cave Graben fault system in the Yates Formation of Rattlesnake Canyon in the Guadalupe Mountains, and investigates the distribution of dolomite around the faults and associated opening-mode fractures, in an effort to understand the control the Cave Graben faults exert on fluid flow through the platform margins. Two generations of dolomite are identified on the outcrop: a fabric retentive dolomite located in the uppermost facies of the platform, and a fabric destructive dolomite that forms white, chalky haloes around syndepositional deformation features. The first generation of dolomite is dully luminescent and has very small crystal sizes, as well as a low trace element concentration and an ¹⁸O-enriched stable isotopic signature compared to Permian marine carbonate ratios. This dolomite is interpreted to have formed from the penecontemporaneous refluxing of concentrated lagoonal brine, and shows little fault control on its distribution. The second generation of dolomite is brightly luminescent and has much larger crystal sizes, as well as a higher trace element concentration and a slightly ¹⁸O-depleted isotopic signature compared to the first generation of dolomite, though it is still enriched in ¹⁸O compared to Permian marine carbonate. This dolomite is interpreted to have formed in a burial environment due to the transport of concentrated brines from the overlying evaporites through syndepositional deformation features. Overall, this study suggests that, once open, syndepositional deformation features may become the primary fluid conduit through otherwise impermeable strata, and may control the distribution of diagenetic products over a long period of geologic time. It provides valuable insight into the interaction of syndepositional faults and fractures and fluid flow, and may improve understanding of diagenesis in analogous subsurface carbonates reservoir intervals. / text
2

Controls on paleokarst heterogeneity. Integrated study of the Upper Permian syngenetic karst in Rattlesnake Canyon, Guadalupe Mountains, USA

Labraña de Miguel, Gemma 20 December 2011 (has links)
The present study contributes to a better understanding of early dissolution mechanisms for syngenetic karst development and provides constraints on the timing of formation of the Rattlesnake Canyon paleokarst system in the Guadalupe Mountains, New Mexico, U.S.A. Paleozoic paleokarsts commonly undergo burial and collapse, which reduces significantly the preservation of early fracture networks and geometries of dissolution. Rattlesnake Canyon constitutes a magnificent scenario for the study of global controls on Upper Permian karsting since early fracture networks and dissolution geometries are extremely well preserved and lack major tectonic deformation. This thesis sheds light on the scientific knowledge of paleokarsts and can be of interest to the oil industry since paleokarsts are common targets of exploration. As the evolution of the reservoir properties is often diagenetically controlled, the diagenetic study was particularly useful in determining the degree of sealing following hydrocarbon charge. 1) Aims This thesis seeks to improve our understanding of the relationship between early syndepositional fracture networks that are typically found in platform margins and syngenetic karst development. The thesis includes multidisciplinary carbonate studies aimed at understanding the multiscale paleokarst heterogeneity by means of (i) the development of a conceptual model for the karst evolution, (ii) the construction of a 3D paleokarst model, (iii) the determination of the diagenetic history of the paleokarst system and (iv) the paleokarst reservoir characterization. 2) Thesis Structure The thesis consists of 9 chapters and 2 appendices. Chapter 1 sets out the rationale for this thesis. Chapter 2 provides an introduction to the most basic aspects of karst science and to the hydrogeological model of Carbonate Island as well as an overview of the state-of-the-art paleokarst studies. The geological setting and the study area is detailed in Chapter 3. The results of the thesis are contained in Chapters 4 to 7. Because of the multidisciplinary nature of this thesis, each of these chapters is dedicated to one discipline. Chapter 4 focuses on the analysis of field data to obtain a conceptual model for the evolution of the paleokarst system. Chapter 5 discusses the methodology to implement the 3D paleokarst model and provides data to assess the dimensions of the system in subsurface. Chapter 6 focuses on the diagenetic stages that affected and controlled the karst development. Finally, Chapter 6 offers a paleokarst reservoir characterization. A comprehensive approach and discussion of the results obtained in each of these chapters are included in Chapter 8. General and specific conclusions are presented in Chapter 9. Appendix One contains a representative image compendium of the petrographic features observed in the paleokarst filling sequence of Fault N. Appendix Two sets out the raw data from the geochemical analysis. The paleokarst analysis using different disciplines provides a complete characterization of paleokarst heterogeneity and enables us to elucidate the controls of the system. / Aquesta tesi contribueix al coneixement dels mecanismes de dissolució que controlen el desenvolupament dels karsts singenètics i proporciona les claus per establir la seqüència de formació del sistema paleokàrstic de Rattlesnake Canyon, Guadalupe Mountains, New Mexico, EEUU. Degut al potencial com a reservori que tenen aquest tipus de sistemes, aquesta tesi no solament concorre al coneixement científic en relació als paleokarsts sinó que també pot ésser d’interès per la indústria del petroli. a) Objectius Aquest estudi cerca contribuir en el coneixement de les relacions entre les falles i fractures sindeposicionals i les estructures de dissolució a Rattlesnake Canyon, així com en el coneixement dels controls globals per la formació de karsts singenètics costaners. La tesi inclou estudis multidisciplinaris dirigits a la determinació de la heterogeneïtat multi-escala del paleokarst de Rattlesnake Canyon mitjançant els següents objectius concrets: a) l’acompliment d’un model conceptual d’evolució del sistema kàrstic, b) la construcció d’un model 3D del sistema kàrstic, c) la determinació de la història diagenètica del paleokarst i d) la caracterització de les propietats de reservori del sistema.
3

Temporal and spatial evolution of the Cave Graben Fault System, Guadalupe Mountains, New Mexico

Mathisen, Maren Gabriella 09 March 2015 (has links)
Numerous recent studies have demonstrated the importance of syndepositional faulting as an inherent element of steep-rimmed carbonate margins. However, these studies have not emphasized the relationship to older shelf margins, multiphase deformation history, and complexity of fault zone internal structure. In the Guadalupe Mountains, New Mexico, extensive syndepositional deformation parallels the Permian Capitan shelf margin reef and has developed in the absence of regional tectonic forces due to a combination of early carbonate cementation, gravitational instability, differential compaction, and variable progradation to aggradation at pre-existing shelf margins. This study focuses on the geometry, growth history, and internal fill type distribution within the Cave Graben Fault System (CGFS) in Slaughter and Rattlesnake Canyons of the Guadalupian (Capitan) shelf margin with the intent to understand the temporal and spatial evolution of deformation in front of the G24 shelf margin. Stratigraphy, faults and fractures exposed within the CGFS were mapped using high-resolution gigapan photos and GPS, along with RCRL Guadalupe airborne lidar, provides a geospatial database for 3D visualization, quantification, and interpretation. Detailed mapping reveals a high degree of variability in fault geometry, including the presence of vertical and lateral fault relays, antithetic and synthetic splays, and highly variable fault and fracture apertures, suggesting a complex deformational history. Hundreds of early-formed fractures have been mapped within the G24-G25 shelf margin system, but the development of significant faults with appreciable displacement only occurs in front of the G24 margin. Vertical fault displacement varies from 9 to 34 m in the CGFS. Breccias several meters in width fill the main faults and contain entrained sediment and clasts of variable age and composition. Stratal geometries reveal that movement and episodic growth occurred along the faults soon after deposition. Further investigation of the sediment and breccia fills suggests that a significant dissolution event along the fault allowed for the entrainment of much younger, post-Permian sediment. Based on these findings it appears that in Rattlesnake Canyon at least 30-60% of the CGFS vertical displacement occurs in the Permian, whereas up to 40-70% may develop post-Permian, providing a significant advancement in the understanding of timing of fault systems within the Capitan shelf margin. / text
4

Integrated lidar and outcrop study of syndepositional faults and fractures in the Capitan Formation, Gaudalupe Mountains, New Mexico, U.S.A.

Jones, Nathaniel Baird 01 November 2013 (has links)
An appreciation of the extent of syndepositional fracturing, faulting, and cementation of carbonate platform margins is essential to understanding the role of early diagenesis and compaction in margin deformation. This study uses integrated lidar and outcrop data along the Capitan Reef from an area encompassing the mouths of both Rattlesnake and Walnut Canyons. Mapping geomorphic expressions of syndepositional faults and fractures at multiple scales of observation was the main approach to delineating zones of syndepositional fractures. Ridge- groove couplets visible in exposures of the Capitan Reef throughout the Guadalupe Mountains were targeted because the ability to identify these as signs of syndepositional fracture development would have implications for the entire reef complex. Results show that these ridgegroove couplets are the product of differential weathering of syndepositional as well as burial-related fractures. Recessive grooves have an average syndepositional fracture spacing of ~13 m whereas ridges have a spacing of ~33 m. vi Smaller (~5-20 m-wide) scale erosional lineaments common in the study area and mappable on airborne lidar are formed by differential erosion of planes of syndepositional faults. Maps of these fault lineaments on the lidar show that syndepositional faults extend laterally for 300 m - 2000 m and relay near the terminations of the faults at each end. Faults can be further grouped into fault systems consisting of sets of faults connected by fault relays that extend for at least the entire length (~12 km) of the study area. Although vertical displacement along faults is typically less than 11 m, syndepositional faults result in changes in structural dip domain of 1-6 degrees across an individual fault. Even smaller erosional lineaments (10 cm-1 m) are visible on the airborne lidar that form as a result of differential erosion of individual fractures. Larger fractures (> 20 cm) can be reliably mapped on the lidar, but smaller features (< 20 cm) cannot be reliably mapped with currently available data and can only be captured using field studies. Fracture fill types are heterogeneous along strike as shown by comparisons of field study locations. Siliciclastic-dominated fills are likely sourced from overlying siliciclastic units of the shelf, which, in this area, were from the Ocotillo Siltstone. These silt-filled fractures are broadly distributed, indicating preferential development and infill of syndepositional fractures during the deposition of the Ocotillo Siltstone in the G27/28 high-frequency sequences. Development of early fractures is also shown to have been influenced by mechanical stratigraphy with changes in fracture spacing between massive to thick-bedded shelf-margin (~17 m fracture spacing) and outer-shelf facies tracts versus thin-bedded outer-shelf and shelf-crest (~28 m fracture spacing). Ultimately, this study demonstrated that the Capitan shelf margin was ubiquitously overprinted by syndepositional fracturing and faulting and that this nearsurface structural modification influenced early diagenetic patterns and internal vii sedimentation throughout the reef margin. Before this study, the extent and nature of syndepositional fracture/fault development within the margin were largely unquantified. Here, by integrating field observations and surface weathering reflections of these fractures as observed in the lidar, we can demonstrate a widespread impact of early fracturing more akin to analogous early-lithified margins such as the Devonian of the Canning Basin of Australia. / text
5

Quantified facies distribution and sequence geometry of the Yates Formation, Slaughter Canyon, New Mexico

Harman, Charles Averill 14 November 2011 (has links)
This study uses a new integrated outcrop data and airborne lidar from Slaughter Canyon, New Mexico, to quantitatively characterize the cycle-scale facies architecture within the G23-G26 high frequency sequences of the Yates Formation. High frequency cycle-scale mapping of these sequences shows sedimentological evidence for accommodation reduction associated with the Permain composite sequence (CS) 13 highstand (G23-G25). Development of the G26 HFS additionally demonstrates the isochronous balance of mixed carbonate-siliciclastic deposition across the Yates-Capitan reef-rimmed shelf during the initial CS-scale transgression following significant exposure and bypass of sand across the shelf. This sequence framework is quantitatively analyzed using progradation to aggradation (P/A) ratios, facies proportions, facies tract dip width, and facies tract bedding angles to evaluate the interplay of eustacy and syndepositional deformation as drivers of stratigraphic architecture. The sequences defined here developed in response to both eustacy and syndepositional deformation, but individual facies distributions and cycle stacking patterns were largely controlled by eustacy; while facies, cycle, and sequence thicknesses as well as facies bedding angles were locally influenced by syndepositional faulting. A reconstruction of each high frequency sequence and stepwise documentation of post-depositional fault displacement and HFS basinward rotation was generated using the lidar data. This analysis shows that the G23-G26 HFS developed basinward-dipping depositional topography from the shelf crest to the shelf margin reef. This geometry was largely unaltered by syndepositional faults during individual HFS deposition, but was rotated basinward shortly thereafter by younger fault movement. The accommodation trends recorded in this largely shelf crest to shelf margin window can be additionally projected into the middle shelf producing zones of the prolific Yates-aged reservoirs on the Northwest Shelf and Central Basin Platform. / text

Page generated in 0.1054 seconds