Spelling suggestions: "subject:"duystème dde sécrétion dde type VI"" "subject:"duystème dde sécrétion dee type VI""
1 |
Etude du système de sécrétion de type VI chez Escherichia coli entéro-agrégatif : Caractérisation d'un sous complexe d'ancrage membranairesAschtgen, Marie-Stéphanie 16 December 2011 (has links)
Bacterial pathogenesis relies on a subset of mechanisms including adhesion to various matrices, antibiotic resistance, defence and action against surrounding microorganisms, and secretion of virulence factors. Among the secretion systems, the recently identified Type VI secretion system (T6SS) has been shown to be involved in both virulence against eukaryotic cells and inter-bacterial warfare. T6SS are composed of a minimum of 13 proteins called "core components". It is believe to form a macromolecular system that spans the envelope to assemble an extracellular structure composed of the Hcp protein with a trimer of VgrG located at the tip. This model has been built following in silico and structural analyses demonstrating the link between several T6SS subunits and bacteriophage T4 baseplate and tail elements. Other T6SS subunits include membrane proteins. Using enteroaggregative Escherichia coli as a bacterial model, the aim of my work is to understand how this system assembles in the cell envelope. I recently showed that four of these membrane proteins, SciP, SciS, SciN and SciZ make contact to form a complex [1]. These four subunits are critical components of the T6SS. I then delineated the interaction network, demonstrating that SciZ interacts with SciP, and that SciS interacts with both SciP and SciN. Further characterization of these subunits showed that SciN is a lipoprotein associated with the outer membrane [2, 4], whereas SciP and SciS are inner membrane proteins anchored through a single and three transmembrane segments respectively. SciZ is a polytopic inner membrane protein carrying a peptidoglycan-binding motif within its periplasmic domain. Mutagenesis and peptidoglycan binding experiments demonstrated that SciZ anchors the T6SS to the cell wall [1, 3]. Overall, we have identified and characterized a trans-envelope complex anchored in both membrane and to the peptidoglycan layer. / Bacterial pathogenesis relies on a subset of mechanisms including adhesion to various matrices, antibiotic resistance, defence and action against surrounding microorganisms, and secretion of virulence factors. Among the secretion systems, the recently identified Type VI secretion system (T6SS) has been shown to be involved in both virulence against eukaryotic cells and inter-bacterial warfare. T6SS are composed of a minimum of 13 proteins called "core components". It is believe to form a macromolecular system that spans the envelope to assemble an extracellular structure composed of the Hcp protein with a trimer of VgrG located at the tip. This model has been built following in silico and structural analyses demonstrating the link between several T6SS subunits and bacteriophage T4 baseplate and tail elements. Other T6SS subunits include membrane proteins. Using enteroaggregative Escherichia coli as a bacterial model, the aim of my work is to understand how this system assembles in the cell envelope. I recently showed that four of these membrane proteins, SciP, SciS, SciN and SciZ make contact to form a complex [1]. These four subunits are critical components of the T6SS. I then delineated the interaction network, demonstrating that SciZ interacts with SciP, and that SciS interacts with both SciP and SciN. Further characterization of these subunits showed that SciN is a lipoprotein associated with the outer membrane [2, 4], whereas SciP and SciS are inner membrane proteins anchored through a single and three transmembrane segments respectively. SciZ is a polytopic inner membrane protein carrying a peptidoglycan-binding motif within its periplasmic domain. Mutagenesis and peptidoglycan binding experiments demonstrated that SciZ anchors the T6SS to the cell wall [1, 3]. Overall, we have identified and characterized a trans-envelope complex anchored in both membrane and to the peptidoglycan layer.
|
2 |
Type VI secretion system effectorsLe, Thi Thu Hang 22 February 2017 (has links)
Mon travail a porté sur la caractérisation des effecteurs toxiques et protéines d’immunité du T6SS Sci-1 d’Escherichia coli Entero-agrégatif, éléments de la lutte inter-bactérienne. Nous avons identifié en outre Tle1, un effecteur de toxine codé par ce groupe et montré que Tle1 possède des activités de phospholipase A1 et A2 requises pour détruire la cellule proie dans la compétition interbactérienne. L'auto-protection de la cellule attaquante est assurée par une lipoprotéine de membrane externe, Tli1, qui lie Tle1 dans un rapport stoechiométrique 1: 1 avec une affinité nanomolaire et inhibe son activité phospholipase. Il a été prédit que la protéine 435 provenant à partir d'un groupe de gènes T6SS1 de l'agent pathogène AIEC LF82 est une phospholipase de la famille d'effecteurs Tle3 avec une activité PLA1. Sa toxicité peut être neutralisée par la protéine d'immunité cognate 434 qui est un Tli3 putatif, en formant le complexe de protéine Tle3 - Tli3. Les deux protéines séparées et leur complexe ont ensuite été appelées protéines complexes Tle3AIEC, Tli3AIEC et Tle3AIEC - Tli3AIEC, respectivement. Afin d'étudier plus en détail le mécanisme de Tle3-AIEC et de Tli3-AIEC, nous avons réalisé l'expression, la purification, la caractérisation, la cristallisation des deux protéines et des études cristallographiques de rayons X préliminaires du complexe Tle3-AIEC/Tli3-AIEC afin de comprendre comment la protéine Tle3-AIEC reconnaît et se lie à son effecteur apparenté Tli3-AIEC et inhibe son activité. Les données préliminaires de diffraction des rayons X ont été recueillies à partir de cristaux Tle3AIEC-SeMet/Tli3AIEC à une résolution de 3,8 Å. / Here, we analyzed the Entero-aggregative Escherichia coli Sci-1 T6SS toxin effectors. We identified Tle1, a toxin effector encoded by this cluster and show that Tle1 possesses phospholipase A1 and A2 activities required for the inter-bacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity.The protein 435 from the pathogen AIEC LF82 has been predicted to be a phospholipase of the Tle3 effector family with PLA1 activity from a T6SS1 gene cluster. Its toxicity can be neutralized by the cognate immunity protein 434 that is a putative Tli3, by forming Tle3 - Tli3 protein complex. The two separated proteins and their complex were then called Tle3AIEC, Tli3AIEC and Tle3AIEC - Tli3AIEC complex proteins, respectively. In order to further investigate the related mechanism of Tle3AIEC and Tli3AIEC, we performed expression, purification, characterization, crystallization of the two proteins and preliminary X-ray crystallographic studies of the Tle3AIEC - Tli3AIEC complex in order to understand how Tle3AIEC protein recognizes and binds to its cognate Tli3AIEC effector and inhibits its activity. X-ray diffraction data were collected from selenomethionine-derivatize Tle3AIEC SeMet - Tli3AIEC crystals to a resolution of 3.8 Å.
|
3 |
Implication du système de sécrétion de type VI de la souche Pseudomonas fluorescens MFE01 dans l'activité antibactérienne, la formation de biofilm et l'inhibition de mobilité. / Involvement of Pseudomonas fluorescens type VI secretion system on antibacterial activity, biofilm formation and motility inhibitionGallique, Mathias 12 December 2017 (has links)
Le système de sécrétion de type VI (SST6) est un complexe multi-protéique permettant l’export d’effecteurs. Ce mécanisme est impliqué à la fois dans la virulence envers les cellules eucaryotes, dans l’activité antibactérienne mais également dans l’acquisition d’ions présents dans ’environnement. Ainsi, le SST6 joue un rôle important dans l’adaptation et la compétition, éléments essentiels dans la colonisation et la persistance au sein d’une niche écologique. Actuellement, très peu d’études portent sur l’importance du SST6 chez des souches environnementales, contrairement aux nombreuses études portant sur des pathogènes tels que Pseudomonas aeruginosa, Burkholderia thailandensis, Vibrio cholerae ou Escherichia coli. Mon sujet de recherche avait pour objectif de caractériser le ou les rôles du SST6 de la souche environnementale Pseudomonas fluorescens MFE01. Ces travaux ont permis d’appréhender certaines fonctions du SST6 de cette souche. Le génome de MFE01 ne comporte qu’un seul cluster de gènes du SST6 où sont regroupés les gènes codant pour la machinerie du SST6 (le « core-component ») à l’exception des gènes hcp. Les protéines Hcp sont des éléments structuraux du SST6 dont elles forment le tube interne qui permet le transfert des effecteurs. Différents gènes hcp sont disséminés sur le chromosome et parmi ces « hcp » orphelins, hcp2 et hcp3 codent respectivement pour les protéines Hcp2 et Hcp3. Ces deux Hcp sécrétées par le SST6, sont associées à l’activité antibactérienne de MFE01 sur différentes souches pathogènes et environnementales, tels que P. aeruginosa, P. fluorescens MFN1032 et Pectobacterium atrosepticum. La protéine Hcp1, codée par le gène orphelin hcp1, est impliquée dans l’inhibition de mobilité de souche compétitrice. Hcp1 permettrait la sécrétion d’au moins deux toxines qui perturberaient l’assemblage du flagelle. Chez MFE01Δhcp1 et MFE01ΔtssC (TssC est un élément de la gaine contractile du SST6), ces toxines seraient accumulées dans le cytoplasme, inhibant ainsi ’assemblage de leur propre flagelle. La surproduction du régulateur FliA, qui contrôle notamment l’assemblage du filament flagellaire, restaure la mobilité chez ces deux mutants. En parallèle, le SST6 de la souche MFE01 est essentiel à la formation et la maturation de biofilm mais également à la compétition bactérienne en biofilm mixte. Ce système interviendrait dans la communication bactérienne indispensable au comportement social, requis lors de l’élaboration des biofilms. / Type VI secretion system (T6SS) is a multiproteic apparatus that secreted proteinaceous effectors. T6SS participate in a variety of functions, whose eukaryote virulence, antibacterial activity or metal ion uptake. These capacities conferring an advantage in adaptation and competition, crucial to colonization or persistence within ecological niche. As well, only a few studies have focused on the T6SS functions of environmental strains, contrary to numerous studies dealing with pathogens as Pseudomonas aeruginosa, Burkholderia thailandensis, Vibrio cholerae or Escherichia coli. The purpose of my research project was to characterize the T6SS function(s) of the environmental strain Pseudomonas fluorescens MFE01. This work had led to understand the various functions of T6SS of MFE01 strain. This strain has a single T6SS cluster where all the core component proteins were gathered, except hcp genes. Three orphan hcp genes where found and are scattered in genome. Hcp proteins form the inner tube allowing effectors secretion. Both Hcp2 and Hcp3 proteins were involved in antibacterial activity on pathogens or environmental strains like P. aeruginosa, P. fluorescens or Pectobacterium atrosepticum. Characterization of Hcp1 proteins role constituted a major focus of this project. Hcp1 proteins participate to motility inhibition of competitive strains through T6SS. Hcp1 may be associated with secretion of at least two toxins perturbing the flagellar filament assembly. In MFE01Δhcp1 and MFE01ΔtssC mutants (Tss is a contractile sheath constituent), these toxins may be accumulated into cytoplasm and perturb assembly of their own flagella. Interestingly, overproduction of FliA flagellar regulator, which controls assembly of flagellar filament, restores motility of both mutants. Simultaneously, T6SS of MFE01 strain contributes to maturation and biofilm formation but also in bacterial competition within mixed biofilm. T6SS may be a mean of bacterial communication and thus coordinate a social behavior, primordial for biofilm formation.
|
4 |
L'étude des antimicrobiens comme modulateurs du système de sécrétion de type VI de vibrio choleraeCros, Candice 07 1900 (has links)
No description available.
|
5 |
Mécanismes moléculaires impliqués dans la formation de biofilm à l’interface eau-composés organiques hydrophobes / Molecular mecanisms involved in the bacterial biofilm formation at the water-hydrophobic organic compound interfaceArantxa, Camus Etchecopar 28 November 2014 (has links)
Les composés organiques hydrophobes (HOC), une grande famille de molécules naturelles ou d’origine anthropique incluant les lipides et les hydrocarbures, constituent une part significative de la matière organique dans les écosystèmes marins. Du fait de leur faible solubilité dans l’eau, les bactéries qui les dégradent requièrent la mise en place de fonctions cellulaires spécifiques permettant d’augmenter la fraction assimilable de ces HOC. La formation de biofilms à l’interface eau-HOC est une de ces stratégies adaptatives. C’est le cas pour Marinobacter hydrocarbonoclasticus SP17, modèle d’étude utilisé au laboratoire, qui est capable de former des biofilms sur un large spectre de HOC métabolisables tels que les alcanes, les triglycérides et les alcools gras. Le but de mes recherches consistait à améliorer la compréhension du processus d’adhésion et de développement des biofilms sur les HOC, à travers la caractérisation fonctionnelle de 10 gènes candidats mis en évidence lors d’analyses d’expression en protéomique et en transcriptomique. Pour mener à bien ce projet, des outils génétiques et une caractérisation fonctionnelle propre à chaque gène ont dû être développés. L’étude fonctionnelle du gène MARHY2686 a relevé son implication dans la formation de biofilm sur les alcanes. La co-expression de MARHY2686 et des gènes adjacents MARHY2687 et MARHY2685 en transcriptomique, leur distribution phylogénétique et leur conservation de la synthénie suggèreraient que ces trois gènes soient impliqués dans le même processus biologique. D’après l’identité forte de 36 % qui existe entre la protéine MARHY2686 et une protéine périplasmique AdeT d’un système de pompe d’efflux tripartite d’Acinetobacter baumanii, cette protéine, en association avec MARHY2687 et MARHY2685, pourrait faire partie d’un système de ce type. Par ailleurs, des observations ont permis d’envisager une implication potentielle de ce gène dans l’assimilation des HOC ou dans l’accumulation des réserves lipidiques intracellulaires. M. hydrocarbonoclasticus SP17 utilise les pili de type IV lors de la formation de biofilm sur les HOC. Ces appendices interviennent lors de l’adhésion de cette souche à des HOC ainsi que dans un processus de détachement d’un support hydrophobe. Les pili pourraient soit intervenir directement pour permettre à la bactérie de se détacher de la surface à laquelle elle s’est adhérée, soit indirectement par l’action de bactériophages. La présence d’une mobilité de type twitching sur les HOC a pu être également envisagée. Enfin, le rôle du système de sécrétion de type VI (T6SS), connu pour permettre à la bactérie d’interagir avec une cellule hôte, lors de la formation de biofilm mono-spécifique sur HOC, où aucun autre microorganisme que M. hydrocarbonoclasticus SP17 n’est présent, a été étudié. / Hydrophobic organic compounds (HOC), a large family of naturally-produced or anthropogenic molecules including lipids and hydrocarbons, represent a significant part of organic matter in marine ecosystems. Because of their low solubility in water, bacteria that degrade those compounds require the establishment of specific cell functions to increase their biodisponibility. Biofilm formation in water-HOC interface is one of these adaptations. The model of bacteria used in our laboratory, Marinobacter hydrocarbonoclasticus SP17, is able to form a biofilm on a wide range of HOC, such as alkanes, fatty alcohols and triglycerides, in order to use them as a carbon and energy source. The main purpose of my work was to broaden the knowledge of how bacteria adhere to and from biofilms on HOC, through the functional characterization of 10 candidate genes highlighted during proteomic and transcriptomic studies. Genetic tools and a gene-specific functional characterization have been developed in order to carry out this project. Functional study conducted on MARHY2686 revealed its involvement in the formation of biofilm on alkanes. Co-expression of MARHY2686 and the adjacent genes MARHY2687 and MARHY2685 durnig transcriptomic analysis together with their phylogenetic distribution and synteny conservation suggest that these three genes are involved in the same biological process. According to the high peptide sequence identity between MARHY2686 and AdeT, a periplasmic protein of a tripartite efflux pump system of Acinetobacter baumanii, MARHY2686 in combination with MARHY2687 and MARHY2685 could be the components of such a system. Other phenotypic observations would consider the involvement of MARHY2686 either in the assimilation of HOC or in the accumulation of intracellular lipid reserves. M. hydrocarbonoclasticus SP17 uses type IV pili during biofilm formation on HOC. These appendages are involved in the adhesion of this strain to and in a detachment process from HOC. Type IV pili could either act directly to allow bacteria to detach from the surface to which it is adhered, or indirectly through the action of bacteriophages. The presence of twitching motility on HOC has also been suggested. Finally, the role of the type VI secretion system (T6SS), a well-known protein system which allows interactions between bacteria and host cells, during the formation of a mono-species biofilm on HOC where no other microorganism than M. hydrocarbonoclasticus SP17 is present, has been studied.
|
Page generated in 0.1253 seconds