• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes / Biomathematical modeling of brain energy metabolism : model reduction and multi-scaled approach, application to decision support for glioma pathology

Lahutte Auboin, Marion 16 March 2015 (has links)
Plusieurs modèles compartimentaux ont déjà été développés pour représenter le métabolisme desneurones et astrocytes. De tels modèles impliquent un trop grand nombre de variables pour êtreaccessibles à l’analyse mathématique et jusqu’à maintenant ils n’ont été discutés que par le biais desimulations numériques. Le point de vue adopté ici est de réduire la contribution de plusieurscompartiments en un terme de forçage, ne conservant que quelques variables dynamiques, et decaractériser ces termes de forçage qui sont compatibles avec les observations expérimentales. Nousdiscutons d’abord un système forcé à deux dimensions puis nous passons à un système à quatredimensions, qui permet alors de faire la distinction entre neurones et astrocytes. Nous nousconcentrons dans ces deux cas sur la compréhension de deux phénomènes important observésexpérimentalement. Le premier est la déflexion initiale ou dip initial de la concentration de lactateextracellulaire rapportée pour la première fois par Hu et Wilson, visualisée in vivo après unestimulation électrique de l’hippocampe d’un rat. L’autre est l’accrochage des fréquences en réponse àl’application d’une séquence périodique de stimulus, observé par Hu et Wilson, et discuté plus tard parl’équipe Aubert-Costalat-Magistretti-Pellerin, sur la base de simulations numériques du systèmeAubert-Costalat. Plus précisément, le dip initial peut être parfaitement expliqué dans le cadre d’unedynamique lente-rapide, par le théorème de l’existence d’une variété lente quand la variété critique estattractive. L’accrochage des fréquences est discutée à la fois au travers de simulations numériques deMatlab et d’une analyse mathématique des systèmes forcés lents-rapides. / Several compartmental models have been developed to represent the metabolism of neurons andastrocytes. Such models involve too many variables to be accessible to mathematical analysis and untilnow they were only discussed via numerical simulations. The viewpoint adopted here is to reduceseveral compartments contributions into a forcing term, keeping very few dynamical variables, andcharacterize these forcing terms which are compatible with the observations. We first discuss a twodimensionalforced system and then move to a four-dimensional system which allows to distinguishbetween neurons and astrocytes. We focus on these two cases in the understanding of two importantphenomena observed in experiments. One is the initial dip in the extracellular lactacte concentration,first reported in vivo by Hu and Wilson on rat brain hippocampus after an electrical stimulation. Theother is a frequency locking response to the application of a periodic sequence of stimuli, alsoobserved by Hu and Wilson, and further discussed by Aubert-Costalat-Magistretti-Pellerin, on thebasis of numerical simulations of the Aubert-Costalat system. More precisely, the initial dip can bewell explained, in the setting of fast-slow dynamics, by the theorem of existence of slow manifoldwhen the critical manifold is transversally attractive. The frequency locking is discussed both viaMatlab numerical simulations and mathematical analysis of forced fast-slow systems.
2

Modélisation et étude du métabolisme énergétique cérébral. Applications à l'imagerie des gliomes diffus de bas grade. / Modeling and analysis of the energetic cerebral metabolism. Applications to medical imaging of low-grade glioma. / Modellizzazione e analisi del metabolismo energetico del cervello. Applicazioni alle lastre mediche del glioma diffuso di basso grado

Perrillat-Mercerot, Angélique 22 October 2019 (has links)
Tout ce qui vit, naît, se nourrit, se reproduit et meurt. Pour le cerveau, la question se complexifie car à la survie des neurones s'ajoute le coût de l'activité cérébrale. La question de la gestion énergétique pour les neurones est particulière car les cellules de notre cerveau évoluent de manière concertée et non par compétition. On sait avec l'imagerie médicale que l'usine neuronale ne fonctionne pas uniquement grâce au glucose ; elle utilise d'autres apports énergétiques tels que le lactate ou le glutamate pour soutenir sa production. Lorsqu'une tumeur apparaît, elle change le métabolisme énergétique pour survivre et soutenir sa propre croissance. En particulier, les cellules cancéreuses se fournissent en lactate et choisissent leur substrat préféré en fonction de l'oxygène disponible. La modélisation mathématique des substrats énergétiques est un outil de choix pour décrire et prédire de tels flux. Coupler ces modèles à des données issues de l'IRM et de la SRM permet d'améliorer la prise en charge du patient présentant un gliome.Cette thèse propose l'approche de plusieurs dynamiques en substrat dans le cerveau sain et gliomateux en se basant sur des systèmes d'équations : échanges locaux en lactate (EDO, système lent-rapide), échanges globaux en substrats (EDO), cycle glutamate/glutamine (EDR) et échanges en lactate en dimensions supérieures (EDP). Ces modèles sont expliqués, décrits grâce aux mathématiques et permettent l'élaboration de simulations ajustées selon des données patient ou issues de la littérature.L'énergie est nécessaire au maintien de la vie. Mais si votre voisin consomme une partie de vos ressources, pouvez-vous encore espérer survivre ? / Everything that lives is born, eats, reproduces and dies. For the brain, the question is more complex because neurons have to survive and to support brain activity. Energy management is also particular because brain cells evolve together with no competition. Thanks to medical imaging, we know that neurons do not consume only glucose. They can use others energetic substrates such as lactate and glutamate as a power source.When a tumor appears, it changes the energetic metabolism to survive and support its own growth. In particular, cancer cells like to consume lactate. They also choose their favorite substrate based on the available oxygen. Modeling of energy substrates is useful to describe and predict energetic kinetics and changes. Mathematical models could get with clinical and medical results to describe, explain or predict low grade glioma dynamics. They can help to characterize and quantify a tumor evolution, then leading to improve their therapeutical management. Exchanges between mathematics and MRI (and MRS) enable to get accurate data and to build suitable mathematical models.This thesis deals with several approaches of substrates dynamics in healthy and gliomatous brains. These researches are based on systems of equations. We model local lactate exchanges (ODE, fast-slow systems), global substrates exchanges (ODE), glutamate/glutamine cycle (RDE) and local lactate exchanges in higher dimensions (PDE). We describe, analyze and give simulations of these models. Simulations are fitted on patient MRI data or literature data. Energy is necessary to live. But if your neighbor consumes a part of your resources, can you still survive ? / Tutto ciò che vive nasce, si nutre, si riproduce e muore. Per il cervello, la questione è più complessa perché i neuroni devono sopravvivere e sostenere l'attività cerebrale. La gestione energetica cerebrale è particolare anche perché le cellule cerebrali evolvono insieme, senza concorrenza. Inoltre, grazie alle immagini mediche, sappiamo che i neuroni non consumano solo del glucosio ma usano altri substrati energetici come il lattato o il glutammato.Quando un tumore si stabilisce, cambia il metabolismo energetico del cervello per sopravvivere e sostenere la propria crescita. In particolare, cellule tumorali consumano del lattato e scelgono il loro substrato preferito basandosi all'ossigeno disponibile.La matematica, e in particolare l'elaborazione di modelli matematici può aiutarci a ottimizzare i dati disponibili, che possono essere, di volta in volta, delle proprietà cellulare o delle lastre MRI o MRS. La modellizzazione dei substrati energetici potrebbe descrivere, spiegare o prevedere le dinamiche energetiche nel cervello.Questa tesi tratta di diversi approcci della dinamica dei substrati nei cervelli sani e gliomatosi. Queste ricerche si basano su sistemi di equazioni. Modellizziamo scambi locali di lattato (ODE, sistemi fast-slow), scambi globali di substrati (ODE), ciclo glutammato/glutammina (RDE) e scambi locali di lattato in dimensioni superiori (PDE). Descriviamo, analizziamo e diamo simulazioni di questi modelli. Le simulazioni sono adeguate su dati MRI paziente o dati di letteratura.Per vivere, l’energia è una necessità. Ma se i Suoi vicini consumassero le Sue risorse, riuscirebbe ancora a sopravvivere ?

Page generated in 0.04 seconds