Spelling suggestions: "subject:"duystème multirobot"" "subject:"duystème multirobots""
1 |
Fault diagnosis and fault tolerant control design for physically linked 2WD mobile robots systems / Diagnostic et commande tolérante aux fautes pour un système de robots mobiles liés physiquementAl-Dujaili, Ayad 19 March 2018 (has links)
Dans les environnements difficiles résultant de catastrophes naturelles ou d'accidents industriels, des robots mobiles peuvent être utilisés pour réduire les interventions humaines. Ces robots doivent pouvoir parcourir de longues distances, suivre des trajectoires précises, transporter des matériels et instruments, tout en étant robustes aux perturbations et aux défaillances éventuelles de leurs composants (capteurs, actionneurs). Dans cette thèse, nous considérons des systèmes composés de robots mobiles à deux roues motrices (2WD), reliés physiquement entre eux. Nous proposons des lois de commande permettant au système multi-robot de suivre une trajectoire de référence malgré la présence de défauts d'actionneurs. Différentes commandes tolérantes aux fautes (FTC : Fault Tolerant Control) sont proposées. Certaines sont des commandes dîtes passives, qui sont conçues pour être robustes à des défauts actionneurs sélectionnés, d’autres sont dîtes actives puisqu’elles intègrent un algorithme de diagnostic (observateur adaptatif non linéaire) qui détecte, localise et estime les défauts.Des résultats de simulation sont présentés tout au long de la thèse pour vérifier la validité et montrer les performances des algorithmes de commande tolérante proposés. / In harsh environments resulting from natural disasters or industrial accidents, reducing human interventions by increasing robotic operations is desirable. The main challenges to be considered are not only that the robots should be able to go over long distances and operate for relatively long periods, but also make the global system tolerant to actuators’ failures. In this thesis, to overcome these challenges, systems composed of multi-linked two-wheel drive (2WD) mobile robots are considered. The objective of these multi-robot systems is to asymptotically track a reference trajectory, despite the presence of actuator faults. In this thesis, we design original Fault Tolerant Control (FTC) schemes. Some of them are passive methods, i.e. robust control laws to given failures, and other ones are active FTC which include a Fault Diagnosis (FD) algorithm (nonlinear adaptive observer) that detects, localizes and estimates the faults, and finally adapt the control actions to the faulty situations. Simulation results are presented all along the thesis to verify the validity of the proposed control algorithms and to show the performance of the FTC schemes.
|
2 |
Vers une interaction humain-robot à une initiative mixe : une équipe coopérative composée par des drones et un opérateur humain / Towards mixed-initiative human-robot interaction : a cooperative human-drone team frameworkUbaldino de Souza, Paulo Eduardo 19 October 2017 (has links)
L’interaction homme-robot est un domaine qui en est encore à ses balbutiements.Les développements se sont avant tout concentrés sur l’autonomie et l’intelligence artificielle et doter les robots de capacités avancées pour exécuter des tâches complexes. Dans un proche avenir, les robots développeront probablement la capacité de s’adapter et d’apprendre de leur environnement. Les robots ont confiance, ne s’ennuient pas et peuvent fonctionner dans des environnements hostiles et dynamiques - tous des attributs souhaités à l’exploration spatiale et aux situations d’urgence ou militaires. Ils réduisent également les coûts de mission, augmentent la flexibilité de conception et maximisent la production de données. Cependant, lorsqu’ils sont confrontés à de nouveaux scénarios et à des événements inattendus, les robots sont moins performants par rapport aux êtres humains intuitifs et créatifs (mais aussi faillibles et biaisés). L’avenir exigera que les concepteurs de mission équilibrent intelligemment la souplesse et l’ingéniosité des humains avec des systèmes robotiques robustes et sophistiqués. Ce travail de recherche propose un cadre formel, basé sur la théorie de jeux, pour une équipe de drones qui doit coordonner leurs actions entre eux et fournir à l’opérateur humain des données suffisantes pour prendre des décisions « difficiles » qui maximisent l’efficacité de la mission, selon certaines directives opérationnelles. Notre première contribution a consisté à présenter un cadre décentralisé et une fonction d’utilité pour une mission de patrouille avec une équipe de drones. Ensuite, nous avons considéré l’effet de cadrage, ou « framing effect » en anglais, dans le contexte de notre étude,afin de mieux comprendre et modéliser à terme certains processus décisionnels sous incertitude.Ainsi, nous avons réalisé deux expérimentations avec 20 et 12 participants respectivement. Nos résultats ont révélé que la façon dont le problème a été présenté (effet de cadrage positif ou négatif), l’engagement émotionnel et les couleurs du texte ont affecté statistiquement les choix des opérateurs humains. Les données expérimentales nous ont permis de développer un modèle d’utilité pour l’opérateur humain que nous cherchons à intégrer dans la boucle décisionnelle du système homme-robots. Enfin, nous formalisons et évaluons l’ensemble du cadre proposé où nous "fermons la boucle" à travers une expérimentation en ligne avec 101 participants. Nos résultats suggèrent que notre approche permet d’optimiser le système homme-robots dans un contexte où des décisions doivent être prises dans un environnement incertain. / Human-robot interaction is a field that is still in its infancy. Developments havefocused on autonomy and artificial intelligence, and provide robots with advanced capabilitiesto perform complex tasks. In the near future, robots will likely develop the ability to adapt andlearn from their surroundings. Robots have reliance, do not get bored and can operate in hostileand dynamics environments - all attributes well suited for space exploration, and emergency ormilitary situations. They also reduce mission costs, increase design flexibility, and maximizedata production. However, when coped with new scenarios and unexpected events, robots palein comparison with intuitive and creative human beings. The future will require that missiondesigners balance intelligently the flexibility and ingenuity of humans with robust and sophisticatedrobotic systems. This research work proposes a game-theoretic framework for a drone teamthat must coordinate their actions among them and provide the human operator sufficient datato make “hard” decisions that maximize the mission efficiency, according with some operationalguidelines. Our first contribution was to present a decentralized framework and utility functionfor a drone-team patrolling mission. Then, we considered the framing effect in the context of ourstudy, in order to better understand and model certain human decision-making processes underuncertainty. Hence, two experiments were conducted with 20 and 12 participants respectively.Our findings revealed that the way the problem was presented (positive or negative framing), theemotional commitment and the text colors statistically affected the choices made by the humanoperators. The experimental data allowed us to develop a utility model for the human operatorthat we sought to integrate into the decision-making loop of the human-robot system. Finally,we formalized and evaluated the close-loop of the whole proposed framework with a last onlineexperiment with 101 participants. Our results suggest that our approach allow us to optimize thehuman-robot system in a context where decisions must be made in an uncertain environment.
|
3 |
Communicating multi-UAV system for cooperative SLAM-based exploration / Système multi-UAV communicant pour l'exploration coopérative basée sur le SLAMMahdoui Chedly, Nesrine 07 December 2018 (has links)
Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multirobot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès technologiques, tels que de meilleures capacités de traitement à bord des robots et des performances de communication plus élevées, et ii) les résultats prometteurs du déploiement de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Vehicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de suite. De telles applications nécessitent que les robots identifient leur environnement et se localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration. Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement inconnu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un système multi-robot où le but est de choisir des régions spécifiques de l’environnement à explorer et à cartographier simultanément par chaque robot de manière optimisée, afin de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Simultaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les points frontières situés entre les zones libres et les zones inconnues – sont assignées aux robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontières de cette carte, ce qui permet d’économiser la bande passante de communication. L’un des points les plus difficiles du SMR est la communication inter-robot. Nous étudions cette partie sous les aspects topologiques et typologiques. Nous proposons également des stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations basées sur des simulations étendues et des bancs d’essai sont présentées. / In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented.
|
Page generated in 0.0306 seconds