Spelling suggestions: "subject:"duystème vestibular"" "subject:"duystème vestibulares""
1 |
Activité de la cellule de Purkinje au sein du système vestibulaire dans un contexte actif / Purkinje cells activities in the vestibulo-cerebellum in freely moving ratsTihy, Matthieu 04 January 2016 (has links)
Un cadre théorique classique pour expliquer comment les mouvements volontaires sont générés et optimisés implique l'existence d'un modèle interne basé sur les conséquences sensorielles de ses propres actions. Le cervelet est souvent considéré comme une structure où ces modèles pourraient être efficacement stockés et mis-à-jour. Parmi tous les systèmes sensoriels, le système vestibulaire est probablement celui où la plus grande proportion de stimuli est auto-générés et pourtant peu étudié en conditions actifs. Pour appréhender le rôle du vestibulo-cervelet, nous avons enregistré des cellules de Purkinje du nodulus en condition active chez le rongeur, associé à l'enregistrement quantitatif des signaux inertiels produits par les mouvements de la tête. Cela a nécessité le développent d'outils de mesure adaptés au petit animal. Ces outils, absents du commerce, sont capable d'enregistrer, et cela sans aucun câble, les mouvements inertiels (accélération linéaire et vitesse angulaire) de celui ci offrant une représentation des informations vestibulaires. Les résultats présentés dans cette thèse montrent que, au moins dans des conditions actives, les cellules de Purkinje présentent une sensibilité sélective à certaines composantes du mouvement de la tête. La diversité des réponses observées démontre de plus que chaque cellule possède son propre " champ récepteur vestibulaire ". Il a ainsi été montré que certaines cellules avaient un champ récepteur en coordonnées égocentriques et d'autres allocentriques. Cette distinction s'inscrit dans le problème général de la transformation par le cervelet des coordonnées vestibulaires et de la représentation de l'environnement. / A classical and theoretical explaining framework how voluntary movements are generated and optimized implies the existence of an internal model based on the sensory consequences of own actions. The cerebellum is often considered as a structure where the models could be effectively stored and made-to-day. Of all the sensory systems, the vestibular system is probably one where the largest proportion of stimuli are self-generated but yet little studied in active conditions. To understand the role of the vestibular-cerebellum, we recorded Purkinje cells from nodulus in active condition in rodents associated with quantitative recording of inertial signals produced by head motion. This required developing the measurement tools adapted to small animals. These tools, absent of trade, are capable of recording, without any cables, the inertial movement (linear acceleration and angular velocity) of this one as a representation of vestibular information. The results presented in this thesis show that, at least in active condition, Purkinje cells exhibit selective sensitivity to certain components of the head movement. The diversity of responses observed further demonstrates that each cell has its own "vestibular receptive field". It has thus been shown that some cells have a receptive field in egocentric coordinates while others allocentric. This results is part of the general problem of the coordinate transformation and of the environment representation by the vestibular cerebellum.
|
2 |
Influence de la graviception vestibulaire sur le développement et les fonctions cognitivo-motrices à l'âge adulte : étude longitudinale chez un modèle murin vestibulo-déficient / Effect of vestibular graviception on development and adult cognitive or motor processes : longitudinal study in vestibular deficient miceLe gall, Anne 15 December 2017 (has links)
La gravité terrestre est une contrainte mécanique fondamentale exercée sur les organismes vivants et contre laquelle nous avons adapté nos stratégies de posture et de locomotion ainsi que toutes les régulations métaboliques et cardiovasculaires. Outre le stimulus mécanique direct, la gravité est mesurée par l'organe vestibulaire, premier système sensoriel à émerger chez les protochordés il y a environ 500 millions d'années, aussi précocement que le système visuel. Le système vestibulaire a alors été asservi aux fonctions d'équilibre et de stabilisation du regard, par des réflexes posturaux et oculaires, fonctions récemment enrichies d’un rôle clé dans la cognition spatiale et sociale chez l’adulte. Ses capacités d’encodage des mouvements de la tête, des accélérations du corps et de la gravité terrestre font de ce système un acteur majeur dans la perception de la verticalité, la navigation, l’orientation et la mémorisation spatiale. Nous avons émis l'hypothèse que la perception sensorielle vestibulaire de la gravité via les otolithes pourrait jouer un rôle crucial non seulement chez l’adulte mais également dans les premières étapes du développement des fonctions sensorimotrices et cognitives. Pour la première fois, nous avons étudié un modèle de souris original (souris Head-tilt, B6Ei.GL-Nox3Het / J) présentant une absence congénitale sélective de gravisenseurs vestibulaires. Les souris présentaient un retard dans l'acquisition des réflexes sensorimoteurs, des capacités d’orientation spatiale par guidage olfactif, d'une communication mère-petits par ultrasons alors que les soins maternels étaient normaux. Un retard dans la locomotion et des troubles hyperactifs avec stéréotypies ont également été montré. Nous démontrons ainsi que le développement des individus sur Terre possède une période critique dépendante de la perception sensorielle vestibulaire de la gravité, au moins entre les jours post-nataux 6 à 10 chez les rongeurs. Les informations otolithiques jouent également un rôle clé chez l’adulte dans les fonctions motrices, les processus mnésiques spatiaux et non spatiaux et dans la régulation émotionnelle. Une corrélation entre ces troubles et le retard développemental a été mis en évidence. Nous travaillons actuellement sur les effets de stimulations sensorielles précoces sur le développement et les fonctions adultes chez la souris Het ainsi que sur la caractérisation structurale et fonctionnelle au niveau cérébral des atteintes développementales et comportementales observées. Les observations chez les souris Het corroborent les symptômes rapportés chez les enfants vestibulo-déficients, soutenant le besoin d'un meilleur dépistage des maladies vestibulaires pendant l'enfance. De manière intéressante, les symptômes de ces souris correspondent à ceux présentés par des modèles murins validés d'autisme et réactualiseraient l’importance de la graviception vestibulaire dans la physiopathologie et la thérapie des troubles du spectre autistique (TSA) et autres maladies neurodégénératives au cours du développement. / Earth’s gravity is a fundamental mechanical constraint for living organisms against which we have adapted our strategies of posture and locomotion as well as all metabolic and cardiovascular regulations. Beyond the mechanical stimulus, the vestibular organ is the first sensory system to emerge in protochordates about 500 million years ago, as early as the visual system, encoding the gravity strength into the brain. The vestibular system has since then been devoted to balance and gaze stabilization supported by postural and ocular reflexes, recently fortified with a key role in spatial and social cognition in adults. Its encoding abilities of head movements, body accelerations and Earth's gravity make this system a major player in the perception of verticality, navigation, orientation and spatial memorization. We have hypothesized that vestibular sensory perception of gravity might play a crucial role not only in adults, but also during the first stages of development in both sensorimotor and cognitive functions. For the first time, we have investigated an original mouse model (Head-Tilt mice, B6Ei.GL-Nox3Het/J) with selective congenital absence of vestibular gravisensors. Our data highlights that mouse pups suffered from a delay in the acquisition of sensorimotor reflexes, spatial olfactive guidance, path integration and ultrasonic communication while maternal care remained normal. In addition, a delay in locomotor development and the appearance of were observed during the late stage of development. We demonstrate that development on Earth has a critical period dependent on the vestibular sensory perception of gravity, at least between postnatal days 6 to 10 in rodents. We have shown that otolithic information plays a key role in the adult motor functions, spatial and non-spatial memory processes, reference frames choice but also in emotional regulation. These disorders have been correlated with early developmental delay. We are currently working on the effects of early sensory stimulation on development and adult functions in our Het mouse model as well as on the structural and functional characterization at the cerebral level of observed developmental and behavioral impairments. Observations in Het mice corroborate with symptoms reported in vestibulo-deficient children, supporting the need for better screening of vestibular diseases during childhood. Remarkably, the symptoms of our vestibulo-congenital deficient mice investigated here matched with the profile of validated mouse models of autism and re-update the significance of vestibular graviception in the physiopathology and therapy of autism spectrum disorders during its development.
|
3 |
Analyse multifactorielle de l'influence de l'environnement sur la stabilité et la locomotion humaine / Contributions to research concerning the influences of the environment on human stability and locomotionSerban, Ionel 08 October 2011 (has links)
La thèse Analyse multifactorielle de l’influence de l’environnement sur la stabilité et la locomotion humaine, propose des recherches théoriques et expérimentales dans le domaine complexe des influences du milieu environnant, à travers ses paramètres spécifiques, sur les performances de la locomotion et d’équilibre stable du corps humain. Elle met ensemble plusieurs domaines pour l’obtention d’une évaluation statistique des influences provenant des paramètres signifiants du milieu environnant sur la locomotion et sur l’équilibre stable, représentés par le centre de pression et par les forces générées dans la zone plantaire. La thèse est structurée en huit chapitres dont quatre sont concernés à l’introduction, les objectifs de la thèse, les conclusions, les contributions originales et le mode de valorisation de la recherche, ainsi qu’aux directions futures de développement, alors que les quatre suivants développent successivement, d’une manière consistante, le sujet de thèse débutant avec l’étude bibliographique dans le domaine spécifique, suivi de l’étude et l’analyse des paramètres spécifiques du milieu environnant, l’analyse de la locomotion et de la stabilité humaine et l’analyse expérimentale des influences de l’environnement sur la stabilité et la locomotion humaine. Elle contient 195 pages, 147 de figures, 22 tableaux et 5 annexes étendues sur 50 pages concernant les recherches expérimentales.Durant le programme de recherche, l’auteur a élaboré et publié 13 articles dans les proceedings des manifestations scientifiques en Roumanie et à l’étranger et a participé à deux contrats de recherche. / The thesis Contributions to research concerning the influences of the environment on human stability and locomotion proposes theoretical and experimental researches in the very complex domain of the influences of environment, described through its specific parameters, on locomotion and stable equilibrium of human body’s performances, characterized by pressure center and by the forces generated in the plantar area. The thesis is structured in eight chapters and, among them: four are concerned on introduction, thesis objectives, conclusions, original contribution and thesis valorization (published papers and research grants)/future research directions. The next four develop, consistently, the thesis subject, beginning with critical analyze of the specialized literature that is followed by the analyze of specific parameters of the environment, the analyze of the human locomotion and stability and of influences of environment on human locomotion and stable equilibrium. It contains 195 pages, 147 figures and 22 tables and is accompanied by 5 annexes on 50 pages concerning the experimental research. During the research program, the author elaborated and published 13 papers in the proceedings of different scientific events in Romania and abroad and was a part of two research teams for scientific grants.
|
4 |
La stimulation vestibulaire galvanique noisy : méthodologie et impact fonctionnelNooristani, Mujda 05 1900 (has links)
Le système vestibulaire joue un rôle important pour plusieurs fonctions, notamment, la perception de mouvement et le maintien de l’équilibre par l’entremise du contrôle postural. Or, une dégradation de la fonction de ce système peut avoir un impact sur le contrôle postural et ainsi augmenter le risque de chutes. Au courant des dernières années, la stimulation vestibulaire galvanique noisy (nGVS) a été démontrée comme étant efficace pour stimuler le système vestibulaire et améliorer le contrôle postural. Toutefois, les données de la nGVS sont fragmentaires et les paramètres optimaux de stimulation n’ont pas été établis. L’objectif général de la thèse était d’examiner l’effet de la nGVS sur le contrôle postural. Plus précisément, cette thèse visait à déterminer la méthodologie optimale de la nGVS et l’influence de la nGVS sur le contrôle postural d’une population présentant une dégradation de la fonction vestibulaire, soit des personnes âgées. La première étude avait pour objectif d’examiner l’effet post-stimulation de la nGVS sur le contrôle postural comparativement à une stimulation placebo. Ainsi, 14 adultes ont reçu une stimulation nGVS alors que 14 autres adultes ont reçu une stimulation placebo (sham). Le contrôle postural a été examiné avant la stimulation, immédiatement après la fin de la stimulation et 1 heure post-stimulation. Les résultats ont démontré une amélioration posturale similaire chez le groupe nGVS et le groupe sham, suggérant donc l’absence d’effet de la nGVS et ainsi un biais expérimental. De ce fait, cette étude a souligné l’importance d’un groupe contrôle lors de l’étude des effets de la nGVS sur le contrôle postural. La seconde étude visait à examiner l’effet de la densité du courant de la nGVS sur le contrôle postural en manipulant la taille des électrodes de stimulation. 36 adultes ont été séparés en 2 groupes expérimentaux, recevant la nGVS, et 1 groupe contrôle, recevant une stimulation placebo. Les groupes expérimentaux recevaient la nGVS soit avec des électrodes 35 cm2 ou 3 cm2. Ainsi, une amélioration posturale significative a été induite par la nGVS appliquée avec les électrodes de 3 cm2, soit celles avec une densité de courant plus élevée, comparativement à la nGVS avec électrodes de 35 cm2 et la stimulation placebo. La troisième étude visait à examiner l’effet de la nGVS sur le contrôle postural de personnes âgées avec et sans atteinte vestibulaire. De plus, cette étude explorait également l’effet post-stimulation de la nGVS chez les personnes âgées en comparaison à une stimulation placebo. Pour ce faire, 24 personnes âgées ont reçu la nGVS, la moitié avait une atteinte vestibulaire et l’autre moitié avait une fonction vestibulaire normale, et 12 personnes âgées ont reçu une stimulation placebo. Les données ont révélé une amélioration significative du contrôle postural induite par la nGVS comparativement à la stimulation placebo. De plus, une plus grande amélioration posturale a été observée chez les personnes âgées avec atteinte vestibulaire que les sujets âgés avec fonction vestibulaire normale après l’arrêt de la stimulation. Les résultats ont également démontré que l’amélioration posturale induite par la nGVS était maintenue après l’arrêt de la stimulation. Globalement, ces études soulignent des considérations méthodologiques de la nGVS, précisément, l’importance d’une stimulation placebo et de la densité du courant. De plus, les résultats suggèrent également un effet bénéfique de la nGVS sur le contrôle postural de personnes âgées, et celles présentant une atteinte vestibulaire en bénéficieraient davantage. Toutefois, des études futures sont requises pour déterminer les effets à long terme de la nGVS et les applications cliniques. / The vestibular system plays an important role for self-motion perception and balance through postural control. Therefore, a vestibular impairment can notably lead to a decrease of postural control and a higher risk of falls. Recently, noisy galvanic vestibular stimulation has been shown to stimulate the vestibular system and thereby improves postural control. However, until now, the optimal methodology for nGVS has not been determined, and the influence of the vestibular function on the effect of nGVS on postural has not been studied. Therefore, the main objective of the thesis was to examine the effect of nGVS on postural control. More precisely, this thesis aimed at determining the optimal methodology to apply with nGVS and to examine the effect of nGVS in a population with a decreased vestibular function, namely older adults. The first study aimed at investigating the sustained effect of nGVS on postural control compared to a sham stimulation. 28 adults were recruited and they either received nGVS or a sham stimulation. Postural control was assessed before stimulation, immediately after stimulation and 1 hour post-stimulation. Results showed a similar improvement of postural control for nGVS and sham, therefore suggesting an experimental bias. This study underlined the importance of a sham stimulation in the exploration of the sustained effect of nGVS on postural stability. The second study aimed at examining the effect of nGVS current density on postural control. To manipulate current density, two different sizes of electrodes were used, therefore 12 adults received nGVS with 35 cm2 electrodes while 12 others received nGVS with 3 cm2 electrodes. The nGVS groups were compared to 12 adults receiving a sham stimulation. The results demonstrated that only nGVS applied with 3 cm2 induced a significant improvement of postural compared to nGVS applied with 35 cm2 and sham stimulation. Therefore, it suggested that higher current density is needed to improve vestibular function. The third study aimed at determining the effect of nGVS on postural control in older adults with and without vestibular impairment. Furthermore, a second objective was to examine the post-stimulation effect of nGVS in older adults compared to a sham stimulation. 36 older adults were recruited, and 24 received nGVS while 12 received a sham stimulation. The nGVS group was composed of 12 older adults with vestibular impairment and 12 with a normal vestibular function. The results revealed that nGVS significantly improved postural control of older adults compared to a sham stimulation. The improvement induced by nGVS was significantly greater in older adults with vestibular impairment compared to older adults with normal vestibular function after the end of stimulation. Furthermore, the effect of nGVS on postural control was sustained after the end of the stimulation period. In summary, these studies underlined important methodological parameters of nGVS and results showed that nGVS could be a promising approach to use with populations with a decreased vestibular function, such as older adults. However, further studies are needed to examine the extent of the sustained effect of nGVS on postural control and to evaluate clinical applications.
|
5 |
Les interactions vestibulo-corticales qui sous-tendent le contrôle de la posture chez les sujets sainsNepveu, Jean-François 02 1900 (has links)
Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal. / The vestibular system and the motor cortex are involved in the control of posture but the nature of their interactions is poorly documented. To characterize vestibulo-cortical interactions underlying the control of balance during quiet standing, the electromyographic activity (EMG) of the soleus (SOL), tibialis anterior (TA) and peroneus longus (PERL) of the right leg was recorded in 14 healthy subjects. Bipolar galvanic vestibular stimulation (GVS) was applied with the cathode behind the right or left ear at various inter-stimulus intervals (ISI) before and after transcranial magnetic stimulation eliciting motor evoked potentials (MEP) in the muscles recorded. When the cathode was on the right, MEP in the SOL were inhibited at 40 and 130 ms while MEP were facilitated in TA at 110 ms. When the cathode was on the left, MEP were facilitated in the SOL at 50 ms, in TA at -10 ms and in PERL at 0 ms. The localization of these interactions along the neural axis was estimated according to the ISI and by comparing the effect of the GVS on the MEP to its effect on the background EMG and on the SOL H-reflex. Based on these analyses, the observed modulations of MEP observed could have occurred at spinal or supraspinal level. These results suggest that the corticospinal output may be modulated by the vestibular system at different levels of the neural axis.
|
6 |
Développement fonctionnel du système vestibulaire chez l’opossum Monodelphis domesticaLanthier, Frédéric 05 1900 (has links)
Les marsupiaux naissent très immatures, mais doivent atteindre une tétine, sans aide de la mère, à laquelle ils s’attachent pour poursuivre leur développement. Des informations sensorielles sont nécessaires pour s’orienter vers la tétine, la trouver, et s’y attacher. Le système vestibulaire, associé au sens de l’équilibre, a été proposé comme pouvant guider les petits marsupiaux vers la tétine en agissant sur les réseaux moteurs spinaux. Diverses études des marsupiaux suggèrent que le développement de ce système pourrait être suffisamment avancé pour influencer les comportements moteurs chez les nouveau-nés, mais son fonctionnement n’a jamais été testé. Pour le faire, nous avons soumis des opossums âgés de P0 (jour de la naissance; postnatal 0) à P21 à des stimulations vestibulaires et traité les tissus de la tête par immunohistochimie pour révéler c-Fos, utilisé comme indicateur d’activité neuronale. Du marquage dans les noyaux vestibulaires a été observé seulement à partir de P15. Pour confirmer ces résultats, nous avons effectué deux types d’expériences de stimulation sur des préparations in vitro d’opossums et enregistré les réponses motrices induites. Ainsi, des élévations de la tête n’ont pas permis de déceler de réponse suite aux stimulations aux âges étudiés (P4-P12). Par contraste, des pressions mécaniques directement appliquées sur le labyrinthe afin de stimuler les organes vestibulaires ont entrainé des réponses à tous les âges testés (P1-P9). Nos résultats suggèrent que la fonction du système vestibulaire est limitée par la maturité de ses organes sensoriels, et qu’il n’influence pas la motricité des nouveau-nés d’opossum en conditions physiologiques avant environ la fin de la 2e semaine de vie, même si les voies nerveuses entre les organes vestibulaires et la moelle épinière semblent déjà établies à la naissance. / Marsupials are born very immature, but must nevertheless find a teat, unaided by the mother, to which they attach to pursue their development. Sensory inputs are necessary to find the teat and attach to it, but the senses involved are still under discussion. The vestibular system, responsible for the sense of balance, was proposed as influencing motor behavior of newborns in various marsupial species by an action on spinal motor networks. Studies in the opossum Monodelphis domestica suggest that the development of the vestibular system could be advanced enough to influence locomotion at birth but its functionality has never been tested. To do that, we subjected intact opossums aged P0 (Postnatal day 0 ; day of birth) to P21 to vestibular stimulations and immunohistochemically processed their brain tissues to reveal c-Fos, used as a marker of neuronal activity. Immunoreactivity of neurons in the vestibular nuclei was observed only from P15 onwards. To confirm those results, we performed two series of experiments on in vitro preparations of newborn opossums, using stimulation of the vestibular apparatus and physiological recording of the induced motor responses Thus, vertical head tilts did not induce motor response at any of the ages studied (P4-P12). In contrast, mechanical pressure applied on the labyrinth to stimulate the vestibular organs induced motor responses at all ages studied (P1-P9). Our results suggest that the vestibular system’s function is limited by the maturity of its sensory organs and that it can’t influence motor activity in physiological condition before the end of the 2nd postnatal week, even if functional pathways from the labyrinth to the spinal cord seem to be already in place at birth.
|
7 |
La détermination d’un seuil moteur pour la stimulation vestibulaire galvanique (GVS) basé sur l’évaluation de l’accélération de la têteMikhail, Youstina 12 1900 (has links)
INTRODUCTION: La stimulation vestibulaire galvanique (GVS) est utilisée pour évaluer l’intégrité du système vestibulaire et améliorer notre compréhension des mécanismes de l‘équilibre. Néanmoins les réponses évoquées montrent une grande variabilité interindividuelle ce qui rend la compréhension du rôle du système vestibulaire difficile.
OBJECTIF: Développer un protocole d’évaluation d’un seuil vestibulaire objectif spécifique à la personne.
MÉTHODES: Dix-huit sujets sains droitiers se tenaient debout sur une plate-forme de force, les yeux fermés, la tête vers l’avant. L’accélération de la tête était enregistrée lorsque la GVS (durée: 200 ms) était appliquée à des intensités de 1 à 4,5mA. Des courbes de recrutement ont été générées afin de déterminer le seuil objectif (T). Puis, les participants ont été stimulés à différentes intensités relatives au seuil (0,5T; 0,75T; 1T et 1,5T). L’aire de l’ellipse de confiance (AE) à 95%, la vitesse de déplacement du centre de pression (CoP) et l’activité électromyographique du soléaire (SOL) ont été mesurées.
RÉSULTATS: 1) Un seuil objectif a été déterminé pour chaque sujet basé sur l’accélération de la tête. 2) L’aire de l’ellipse, pendant la stimulation, corrélait avec l’intensité de stimulation (r=0,95; p=0,03). 3) L’amplitude de la 1ère phase du patron triphasique de la vitesse de déplacement du CoP corrélait aussi avec l’intensité de stimulation (r=0,98; 0,04). 4) En plus, l’amplitude de la réponse musculaire à moyenne latence induite par la GVS sur le SOL montrait une corrélation significative avec l’intensité de stimulation (r=0,7; p=0,045).
DISCUSSION: Un seuil objectif vestibulaire peut être identifié par un accéléromètre. Les réponses vestibulaires mesurées par l’AE et le CoP sont proportionnelles aux intensités de stimulation relatives au seuil objectif déterminé. / INTRODUCTION: Galvanic vestibular stimulation (GVS) is used to assess the integrity of the vestibular system and to improve our understanding of the mechanisms of balance. However, the GVS-induced responses show great inter-individual variability, which makes it difficult to understand the contribution of the vestibular system in maintaining balance.
OBJECTIVE: To develop a protocol identifying an objective vestibular threshold for GVS in order to limit this variability observed on GVS-induced responses.
METHODS: Eighteen healthy right-handed subjects stood on a force platform, eyes closed, head forward. The head acceleration was recorded when the GVS (duration: 200 ms) was applied at intensities varying between 1 and 4.5mA. Recruitment curves were reconstructed to determine the objective threshold (T). Then, the participants were stimulated at different intensities relative to threshold (0.5T; 0.75T; 1T and 1.5T). The 95% confidence ellipse area, the velocity of the center of pressure (CoP) displacement and the electromyographic activity of the soleus muscle (SOL) were measured.
RESULTS: 1) An objective threshold was determined for each subject based on the acceleration of the head. 2) The area of the ellipse, during stimulation, correlated with the stimulation intensity (r = 0.95; p = 0.03). 3) The amplitude of the 1st peak of the three-phase CoP velocity pattern also correlated with the stimulation intensity (r = 0.98; 0.04). 4) In addition, the amplitude of the medium latency response induced by the GVS on the SOL showed a significant correlation with the stimulation intensity (r = 0.7; p = 0.045).
DISCUSSION: An objective vestibular threshold can be identified by an accelerometer. The vestibular responses measured by the ellipse area and the CoP are proportional to the stimulation intensities relative to the determined objective threshold.
|
8 |
Effect of galvanic vestibular stimulation on gait in healthy subjectsAbbariki, Faezeh 07 1900 (has links)
This study aims to characterize vestibular responses during gait and assess the effect of Galvanic Vestibular Stimulation (GVS) on cycle duration in healthy young individuals. Fifteen right-handed individuals participated. Electromyography (EMG) recordings of Soleus (SOLs) and Tibialis Anterior (TAs) were conducted. Stimulation intensity was determined using an accelerometer to measure head tilt induced by GVS (1-4 mA, 200 ms) and establish a motor threshold. Participants walked on a treadmill while GVS was administered at the stance phase onset with 1T (2.2 mA) and 1.5T (3.3 mA) intensities, using cathodes behind the right (RCathode) or left ear (LCathode). EMG traces were analyzed. GVS predominantly elicited long-latency responses in the right SOL, right TA, and left TA muscles, with short-latency responses in the left SOL. Responses in the right SOL, left SOL, and left TA were influenced by stimulation polarity, being facilitatory and inhibitory responses (right SOL 168.4±13.4 vs. 91.7±23.9, left SOL 189.2±28.6 vs. 84.7±29.8, and left TA 149.4±8.2 vs. 69.5±1.3 in RCathode vs LCathode respectively). When using the RCathode, the gait cycle was prolonged, attributed to prolonged EMG activity in the left SOL (p = 0.008 at 1T and 0.004 at 1.5T) and left TA (p = 0.035 at 1T and 0.002 at 1.5T) muscles. No significant change occurred with LCathode configuration. This study shows that low-intensity GVS at stance onset can lengthen the gait cycle by prolonging EMG activity of ankle muscles on the anode side. / Cette étude caractérise les réponses vestibulaires pendant la marche et évalue l'effet de la simulation vestibulaire galvanique(SVG) sur la durée du cycle chez des jeunes en bonne santé. Quinze personnes droitières ont participé. Des enregistrements d'électromyographie (EMG) du Soléaire (SOL) et du Tibialis Antérieur (TA) ont été effectués. L'intensité de la simulation a été déterminée via un accéléromètre mesurant l'inclinaison de la tête induite par la SVG (1-4 mA, 200 ms). Pendant la marche sur tapis roulant, la SVG était administrée au début de la phase d'appui avec des intensités de 1T (2,2 mA) et 1,5T (3,3 mA), utilisant des cathodes derrière l'oreille droite (RCathode) ou gauche (LCathode). La SVG a surtout engendré des réponses à latence longue dans les muscles SOL droit, TA droit et TA gauche, avec des réponses à latence courte dans le SOL gauche. Les réponses dans le SOL droit, SOL gauche et TA gauche ont été influencées par la polarité de la simulation, présentant des réponses facilitatrices et inhibitrices (SOL droit 168,4±13,4 vs. 91,7±23,9, SOL gauche 189,2±28,6 vs. 84,7±29,8 et TA gauche 149,4±8,2 vs. 69,5±1,3 en RCathode vs LCathode respectivement). Avec RCathode, le cycle de marche s'est prolongé, atribué à une activité EMG prolongée dans les muscles SOL (p = 0,008 à 1T et 0,004 à 1,5T) et TA gauche (p = 0,035 à 1T et 0,002 à 1,5T). Aucun changement significatif n'est survenu avec LCathode.
|
9 |
Informations vestibulaires et prise de perspective : approches comportementales, cliniques et electrophysiologiques / Vestibular infomation and perspective taking : behavioral, clinical and electrophysiological approachesDeroualle, Diane 25 September 2017 (has links)
Ce travail a pour but de décrire les relations réciproques entre prise de perspective et informations vestibulaires. Une étude chez des patients avec un déficit vestibulaire bilatéral ancien et des sujets contrôles a montré que l’ancrage du soi sur le corps et la simulation implicite de la perspective visuo-spatiale d’autrui étaient similaires chez les deux groupes. Ainsi, une perte vestibulaire ancienne n’entraînerait pas de conflits multisensoriels, connus pour évoquer un sentiment de perspective désincarnée chez des patients avec des déficits vestibulaires aigus. Une étude chez des volontaires sains a combiné des stimulations vestibulaires naturelles sur fauteuil rotatoire à des tâches de prise de perspective dans un environnement virtuel embarqué. Les temps de prise de perspective étaient modulés en fonction de la direction de la rotation. Cette influence n’était pas présente pour la rotation mentale d’objets 3D. La contribution vestibulaire canalaire modulerait donc spécifiquement les rotations mentales du point de vue. Enfin, les modulations cognitives du traitement des informations vestibulaires ont été analysées par l’enregistrement de potentiels évoqués myogéniques vestibulaires sur les muscles sternocléidomastoïdiens et trapèzes. L’amplitude des potentiels évoqués était significativement modulée par l’angle séparant le point de vue du participant et celui d’un avatar distant. Nos travaux théoriques et les résultats de cette série d’expériences démontrent la contribution des informations vestibulaires à la prise de perspective visuo-spatiale. / This thesis aims at describing the reciprocal relations between perspective taking and the vestibular system. A study in patients with bilateral vestibular deficits and controls showed that the anchoring of the self to the body and implicit visuo-spatial perspective taking were similar in both groups. Our negative findings offer insight into the multisensory mechanisms of embodiment: only acute peripheral vestibular disorders and neurological disorders in vestibular brain areas may evoke disembodied experiences. A second study, combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the view point of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the view point of a distant avatar. Our results showed that participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking, but not a general effect on mental imagery. Finally, cognitive modulations of vestibular information processing were analyzed by recording vestibular-evoked myogenic potentials on the sternocleidomastoid and trapeze muscles. The amplitude of evoked potentials was significantly modulated by the angle separating the participant’s viewpoint to that of a distant avatar. To conclude, our theoretical work, together with results from this series of experiments, demonstrate the contribution of vestibular information to visuo-spatial perspective taking.
|
10 |
Contribution des signaux vestibulaires à la sélection des trajectoires lors de mouvements d’atteinteHaché, Simon 01 1900 (has links)
Les actions volontaires comme les mouvements d’atteinte sont souvent exécutées alors que notre corps se déplace dans l’espace. Il est donc nécessaire de maintenir une représentation spatiale des objets avec lesquels nous interagissons ainsi que des obstacles à éviter, tout en prédisant les conséquences du mouvement du corps sur le bras. Le système vestibulaire est une source majeure d’information à propos de nos mouvements et il participe au contrôle des mouvements d’atteinte à la fois spatialement et dynamiquement. Or, sa contribution à la sélection d’une action reste méconnue. Le but de cette étude était d’explorer la manière dont les signaux vestibulaires influencent la sélection de trajectoires de mouvements d’atteinte lorsqu’il y a un déplacement par rapport aux objets présents dans l’environnement. Nous avons testé l’hypothèse que le choix d’une trajectoire évitant un obstacle est influencé par les signaux vestibulaires selon des mécanismes distincts lors de la planification et de l’exécution de l’action. Pour tester cette hypothèse, des stimulations galvaniques vestibulaires (SGV) ont été utilisées afin de simuler des rotations du corps pendant que des participants humains devaient effectuer des mouvements d’atteintes dans la noirceur vers une position mémorisée tout en évitant un obstacle intermédiaire. La position latérale de l’obstacle variait entre les essais et les participants pouvaient choisir de l’éviter par la droite ou par la gauche. Dans différentes expériences, la SGV était appliquée avant ou pendant le mouvement d’atteinte. Nos prédictions étaient que la SGV appliquée avant le début du mouvement devrait biaiser le choix de trajectoire autour de l’obstacle dans le même sens que la rotation simulée, de manière compatible avec l’impact d’une mise à jour spatiale causée par les signaux vestibulaires. En revanche, la SGV appliquée pendant le mouvement devrait biaiser le choix dans la direction opposée à la rotation simulée, suivant l’hypothèse que les signaux vestibulaires influencent la sélection de la trajectoire grâce à un mécanisme de compensation en ligne qui stabilise la trajectoire dans l’espace. Nos résultats suggèrent que les signaux vestibulaires influencent bel et bien la sélection des trajectoires de mouvements d’atteinte par des mécanismes distincts lors de la planification et de l’exécution. / Voluntary actions such as reaching are often executed as our body moves through space. This
makes it necessary to maintain a spatial representation of the objects we want to interact with
and the obstacles we want to avoid, as well as to predict the dynamic consequences of the body’s
motion on the arm. The vestibular system is a major source of information about our body motion
and has been shown to play an important role in both the spatial and dynamics aspects of reach
control. However, less is known about its contribution to action selection. The goal of this study
was to explore how vestibular signals influence the selection of reach trajectories as we move
among objects in the environment. We tested the hypothesis that choices of reach trajectory
around an obstacle are influenced by vestibular signals and that this influence is mediated by
distinct mechanisms during reach planning vs. execution. To test this hypothesis, we used galvanic
vestibular stimulation (GVS) to simulate body rotation as human subjects made reaching
movements in darkness to a remembered target while avoiding collision with a remembered
obstacle. The obstacle’s position varied across trials and subjects could choose to reach around it
either to the left or to the right. In different experiments, GVS was applied either prior to reach
onset or during reach execution. We predicted that GVS applied before reach onset should bias
trajectory choices around the obstacle in the same direction as the simulated motion, consistent
with the hypothesis that during planning, vestibular signals influence trajectory selection through
“spatial updating” mechanisms. In contrast, GVS applied during reaching was predicted to bias
the choice of reach trajectories in the opposite direction to the simulated motion, consistent with
the hypothesis that during execution vestibular signals influence trajectory selection through
“online compensation” mechanisms that help to stabilize trajectories in space. Our results were
generally consistent with these predictions. They suggest that vestibular signals indeed influence
reach trajectory selection and that they do so through interactions with distinct mechanisms
during planning versus execution.
|
Page generated in 0.0684 seconds