• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of biomimetic systems for the study of molecular motor oscillations / Développement de systèmes biomimétiques pour l'étude des oscillations des moteurs moléculaires

Lee Tin Wah, Jonathan 28 November 2012 (has links)
Pas de résumé en français / Recent studies have suggested that minimal actomyosin systems have the intrinsic property to oscillate whensubjected to an elastic load. A similar situation can be found in various biological systems, leading, both in-vivoand in-vitro, to spontaneous oscillations. In particular, muscular systems as well as mechanosensitive hair-cellbundles in the inner ear have been shown to oscillate spontaneously as the result of active force production by anacto-myosin protein complex. We attempt to shed light on the mechanism behind the oscillatory activity of theacto-myosin system, in particular by determining the parameters that control the frequency and amplitude ofoscillation. The stiffness of the system, the total force developed by the motors and the type of motors have beenproposed as being influential in this respect. To investigate this effect, we make use of a modified motility assayconsisting of a motor-driven stiff polarized actin bundle subjected to an elastic load provided by opticaltweezers. During the course of this work, we also characterized auto-assembled magnetic bead columns andassessed their viability as molecular force sensors to study the oscillations. The fact that they can easily beorganized into large arrays makes them interesting as potential ‘high-throughput’ force sensors
2

Study of the Metastatic Process of Circulating Tumour Cells by Organ-on-a-Chip In Vitro Models / Développement de systèmes biomimétiques microfluidiques pour l’étude du processus métastatique à partir de cellules tumorales circulantes

Ahmad-Cognart, Hamizah 14 September 2018 (has links)
90% de la mortalité par cancer provient de tumeurs disséminées, ou métastases. Ces métastases se forment à partir de cellules tumorales qui s'échappent d'une tumeur primaire, circulent dans le sang, puis quittent les vaisseaux sanguins pour enfin aller nicher dans des organes distants et former des tumeurs secondaires. Les processus par lesquels ces cellules circulantes envahissent les organes distants, remodèlent leur environnement pour créer une «niche micrométastatique», prolifèrent pour produire des métastases macroscopiques, sont mal connus, principalement en raison d'un manque de modèles expérimentaux. En effet ces événements sont rares, se produisent à une échelle microscopique et à des localisations à priori inconnues. La perte d'adhérence cellulaire des cellules tumorales se détachant des tissus tumoraux primaires est associée à un phénomène de transformation connu sous le nom de transition épithéliale-mésenchymateuse (EMT) conduisant à la perte des caractéristiques épithéliales. Dans ce travail, nous avons souhaité aborder la question du processus métastatiques par l'étude de l'influence de l'étape de circulation dans le flux sanguin sur différentes caractéristiques de cellules tumorales. Pour cela, des modèles microfluidiques contenant des constrictions mécaniques afin d'imiter la microcirculation sanguine ont été conçus et fabriqués. Nous avons soumis des cellules provenant de tumeurs primaires du sein dans des situations de confinement périodiques à l'intérieur de ces canaux microfluidiques en utilisant un système de contrôle de flux. Nous avons étudiés l'impact des déformations induites par les constrictions des canaux microfluidiques sur l'expression génétique des marqueurs EMT, la morphologie ainsi que la dynamique des changements morphologiques. Nous montrons que ces paramètres cellulaires sont touchés par la déformation mécanique imposée sous flux, suggérant que l'étape de circulation des cellules tumorales dans le sang a un rôle important dans la capacité de celles-ci à produire des métastases. / 90% of cancer mortality arises from metastases, due to cells that escape from a primary tumor, circulate in the blood as circulating tumor cells (CTCs), leave blood vessels and nest in distant organs. The processes by which CTCs invade distant organs, remodel their environment to create a “micrometastatic niche”, the eventual triggering of a proliferation leading to a macroscopic metastases, are poorly known, mostly because of a lack of experimental models. These events are rare; occur in the body at unknown places and on a microscopic scale. The loss of cell adhesion of tumor cells detaching from the primary tumor tissues will undergo a transformation phenomenon known as epithelial-to mesenchymal transition (EMT) leading to the loss of epithelial characteristics with different expression patterns of EMT markers (E-cadherin, N-cadherin, Vimentin, Snail1/2, Twist1/2, ZEB1/2). The changes in mechanical and physical properties of interacting cells during morphological and malignant transformation are investigated and their quantifications measured. Here, microfluidic models containing mechanical constrictions in order to mimic the blood microcirculation have been designed and fabricated. Metastatic breast cancer cells are subjected and confined to the microfluidic channels using a flow control system. These cells are circulated under optimal culture conditions, and monitored in the channels for the observance of biophysical occurrences from continuous mechanical cellular deformations. The biophysical effects of circulation and confinement on tumor cell morphogenesis will be investigated.
3

Dynamique des réseaux d'actine d'architecture contrôlée / Dynamics of controlled actin network's architecture

Reymann, Anne-Cécile 11 July 2011 (has links)
Mon travail fut de développer différents projets en vue de mieux comprendre la dynamique et l'organisation des réseaux d'actine et les mécanismes moléculaires à l'origine de la production de force, cela en systèmes reconstitués bio-mimétiques. Dans un premier temps je me suis intéressée à l'étude de l'organisation spatio-temporelle des réseaux d'actine et de ses protéines associées durant la motilité de particules recouverte de promoteurs de nucléation (Achard et al, Current Biology, 2010 et Reymann et al, sous presse à MBOC). J'ai suivi en temps réel l'incorporation de deux régulateurs de l'actine (capping protein et ADF/cofiline) et montré que leur contrôle biochimique sur l'actine gouverne également ces propriétés mécaniques. Afin de mieux caractériser les propriétés mécaniques de ces réseaux d'actine en expension, j'ai ensuite développé un système biomimétique novateur utilisant un set-up de micro-patterning permettant un contrôle spatial reproductible des sites de nucléation d'actine. Cela m'a permis de montrer comment des barrières géométriques, semblables à celles trouvées dans les cellules, peuvent influencer la formation dynamique de réseaux organisés d'actine et ainsi contrôler la localisation de la production de forces. (Reymann et al, Nature Materials, 2010). De plus l'addition de moteurs moléculaires sur ce système versatile nous a permis d'étudier la contraction induite par des myosines. En particulier les myosines VI-HMM interagissent de manière sélective sur différentes architectures d'actine (organisation parallèle ou antiparallèle, réseau enchevêtré), aboutissant à un processus en trois phase : tension puis déformation des réseaux d'actine fortement couplé à un désassemblage massif des filaments. Ce phénomène est intimement dépendant de l'architecture du réseau d'actine et pourrait donc jouer un rôle essentiel dans la régulation spatiale des zones d'expansion et de contraction du cytosquelette in vivo. (Travail en cours d'écriture). / I have developed different projects in order to tackle the problem of actin network dynamics and organization as well as the molecular mechanism at the origin of force production in biomimetic reconstituted systems. My first interest concerned the spatiotemporal organization of actin networks and actin-binding proteins during actin based motility of nucleation promoting factor-coated particles (Achard et al, Current Biology, 2010 and Reymann et al, in press at MBOC). I tracked in real time the incorporation of two actin regulators and showed that their biochemical control of actin dynamics also governs its mechanical properties. To further characterize mechanical properties of expanding actin networks, I used an innovative micro-patterning set-up allowing a reproducible spatial control of actin nucleation sites. It allowed me to show that geometrical boundaries, such as those encountered in cells, affect the dynamic formation of highly ordered actin structures and hence control the location of force production (Reymann et al, Nature Materials, 2010). Finally the addition of molecular motors on this tunable system allowed me to study implications for myosin-induced contractility. In particular, HMM-MyosinVI selectively interact with the different actin network architectures (parallel, anti-parallel organization or entangled networks) and leads to a selective three-phase process of tension, deformation of actin networks tightly coupled to massive filament disassembly. This phenomenon being highly dependent on actin network architecture could therefore play an essential role in the spatial regulation of expanding and contracting regions of actin cytoskeleton in cells. (Work in writing process).
4

Caractérisation de systèmes biologiques à l'échelle nanométrique : études des interactions entre des modèles membranaires et des agents exogènes / Characterization of biological systems at the nanoscale : study of the interaction between biomimetic membranes and exogenous agents

Beauvais, Estelle 15 October 2013 (has links)
Les membranes biologiques sont impliquées dans divers mécanismes comme la reconnaissance moléculaire ou encore la fusion membranaire. Les lipides, principaux composants des membranes, sont inhérents à ces processus cellulaires, mais leur organisation et leur rôle fonctionnel au sein de ces systèmes sont très complexes. Dans ce travail, nous avons utilisé des modèles membranaires mimant ces systèmes biologiques pour identifier les interactions mises en jeu avec divers agents exogènes (AEs), en utilisant la microscopie à force atomique (AFM). Nous avons donc travaillé sur deux AEs différents qui interagissent potentiellement avec ces membranes. Le premier intervient directement dans le cadre de l'étude du paludisme. Le mécanisme moléculaire de cette maladie (impliquant probablement des structures lipidiques) n'étant pas clair, la compréhension de celui-ci faciliterait le développement de nouvelles molécules antipaludiques et/ou cibles thérapeutiques. Parallèlement notre étude s'est portée sur l'interaction des nanoparticules (NPs) de TiO2, notre second AE, avec les membranes. Très utilisées dans l'industrie, ces NPs de TiO2 pourraient avoir un impact sur la santé humaine, en interagissant notamment avec les membranes cellulaires. Des techniques biophysiques classiques ont tout d'abord été utilisées pour évaluer l'interaction de l'AE avec des systèmes biomimétiques. Ensuite, lorsque celle-ci est prouvée, l'AFM est utilisée pour visualiser les changements morphologiques des modèles membranaires en présence de ces AEs. Ainsi, pour chaque AE, nous avons finalement suggéré un mécanisme d'interaction afin de répondre aux problématiques soulevées. / Biological membranes play a crucial role as a biological barrier but, paradoxically, they were involved in various precesses : as a molecular recognition, enzymatic catalysis, or membrane fusion. Lipids, as a main component of membranes, are entailed in these process but composition, organization, and functional role in these biological systems are quite complex. Here, we use lipid models mimicking biological membrane to identify their interaction mechanisms with various exogenous agents (EAs) like peptides, nanoparticules, drugs, proteins, using atomic force microscopy (AFM). In this project, we worked on two different molecules which interact potentially with biological membrane. The first one was a molecule directly implicated in malaria disease. In fact, the molecular mechanism, probably involving lipid membranes, is still unclear. The understanding of this mechanism would participate to find new antimalarial drug or new therapeutic targets. The second EA studied was titanium dioxide nanoparticules (TiO2 NPs). Widely used in industry, this product from nanotechnology's development could have an impact on human health, whose potential toxicity mechanism still unknown. Biophysical techniques such as fluorescence spectroscopy, Langmuir monolayer were used to evaluate the potential interaction of the EAs with biomimetic membranes. Then, when the interaction was proved, AFM was used in order to visualize the effects inferred by these EAs. Using supported lipid bilayers, we imaged their behavior after injection of the EA concerned, at the nanometer scale. For each EA, we could suggest a mechanism of interaction and respond to the issues raised.
5

Caractérisation de systèmes biologiques à l'échelle nanométrique : études des interactions entre des modèles membranaires et des agents exogènes

Beauvais, Estelle 15 October 2013 (has links) (PDF)
Les membranes biologiques sont impliquées dans divers mécanismes comme la reconnaissance moléculaire ou encore la fusion membranaire. Les lipides, principaux composants des membranes, sont inhérents à ces processus cellulaires, mais leur organisation et leur rôle fonctionnel au sein de ces systèmes sont très complexes. Dans ce travail, nous avons utilisé des modèles membranaires mimant ces systèmes biologiques pour identifier les interactions mises en jeu avec divers agents exogènes (AEs), en utilisant la microscopie à force atomique (AFM). Nous avons donc travaillé sur deux AEs différents qui interagissent potentiellement avec ces membranes. Le premier intervient directement dans le cadre de l'étude du paludisme. Le mécanisme moléculaire de cette maladie (impliquant probablement des structures lipidiques) n'étant pas clair, la compréhension de celui-ci faciliterait le développement de nouvelles molécules antipaludiques et/ou cibles thérapeutiques. Parallèlement notre étude s'est portée sur l'interaction des nanoparticules (NPs) de TiO2, notre second AE, avec les membranes. Très utilisées dans l'industrie, ces NPs de TiO2 pourraient avoir un impact sur la santé humaine, en interagissant notamment avec les membranes cellulaires. Des techniques biophysiques classiques ont tout d'abord été utilisées pour évaluer l'interaction de l'AE avec des systèmes biomimétiques. Ensuite, lorsque celle-ci est prouvée, l'AFM est utilisée pour visualiser les changements morphologiques des modèles membranaires en présence de ces AEs. Ainsi, pour chaque AE, nous avons finalement suggéré un mécanisme d'interaction afin de répondre aux problématiques soulevées.
6

Approches biomimétiques de l'assemblage de protéines de réserve de blé

Banc, Amélie 23 November 2007 (has links) (PDF)
L'assemblage des protéines de réserve de blé(prolamines) sous forme de corpuscules protéiques lors du développement du grain reste aujourd'hui un mécanisme peu compris. Ce travail de thèse a consisté à utiliser plusieurs approches biomimétiques dans le but de déterminer les paramètres physico-chimiques pouvant entrer en jeu dans l'assemblage in vivo de ces protéines. Les gamma-gliadines et omega-gliadines, ont été choisies comme prolamines modèles, et leurs modes d'assemblages ont été étudiés in vitro dans des solutions aqueuses. Une attention particulière s'est portée sur leur comportement aux interfaces. Pour mimer le contexte biologique, ces protéines ont été étudiées en présence de membranes lipidiques. Les résultats de ces travaux indiquent que, du fait de leur insolubilité, les gliadines présentent une forte capacité à s'assembler en milieu aqueux, en particulier aux interfaces. Les études spectroscopiques montrent que ces protéines présentent des structures secondaires très labiles susceptibles de s'orienter aux interfaces. Que ce soit à l'interface air-eau, ou sous des monocouches lipidiques, les gliadines s'adsorbent sous forme de monocouches. Pour de fortes concentrations en protéines, l'épaisseur des couches adsorbées de gamma-gliadines croît pour former des domaines protéiques denses, phénomène non observé dans le cas des omega-gliadines. Un modèle d'auto-assemblage, basé sur la structure primaire de ces gliadines est ainsi proposé, et suggéré comme mécanisme initial de formation des corpuscules protéiques.

Page generated in 0.075 seconds