• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse harmonique associée à des systèmes de racines et aux opérateurs de Dunkl rationnels

Deleaval, Luc 07 December 2010 (has links) (PDF)
Dans cette thèse, on s'intéresse à l'analyse harmonique et aux fonctions spéciales associées aux opérateurs de Dunkl rationnels qui sont des déformations des dérivées directionnelles par des réflexions. Ils fournissent un outil décisif pour étendre, dans le cadre des systèmes de racines et des groupes de réflexions associés, l'analyse de Fourier euclidienne et l'analyse sur les espaces symétriques riemanniens plats. Après avoir donné un panorama détaillé de la théorie de Dunkl, on étudie l'opérateur maximal défini dans ce contexte. On commence par apporter des améliorations sur le comportement des constantes du théorème maximal de Thangavelu et Xu pour un groupe de réflexions quelconque. On étend ensuite dans un cadre vectoriel leur théorème en établissant dans le cas Z_2^d des inégalités de Fefferman-Stein. Pour y parvenir et puisque les techniques d'analyse réelle ne se prêtent pas à cet opérateur maximal, on construit un opérateur de type Hardy-Littlewood plus commode à étudier. A cet effet, on donne une estimation fine de la translation généralisée de l'indicatrice d'une boule. Notre étude est ensuite consacrée à des résultats d'intégrabilité exponentielle qui complètent les inégalités de Fefferman-Stein, et à un théorème maximal vectoriel pour des hypergroupes de Bessel-Kingman. Enfin, on développe l'analyse de Dunkl dans le cas d'un sous-système positif de racines orthogonales. On y établit une formule explicite du noyau de Dunkl et une formule produit qui implique le caractère borné de la translation de Dunkl. Le cas particulier d'un système de type A_1 est étudié afin d'établir une égalité liant les fonctions de Bessel normalisées et les polynômes de Gegenbauer.
2

Singularité et théorie de Lie / Singularity and Lie Theory

Caradot, Antoine 14 June 2017 (has links)
Soit Γ un sous-groupe fini de SU2(ℂ). Alors le quotient ℂ2/Γ peut être plongé dans ℂ3 sous la forme d'une surface munie d'une singularité isolée. Le quotient ℂ2/Γ est appelé singularité de Klein, d'après F. Klein qui fut le premier à les décrire en 1884. A travers leurs résolutions minimales, ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types Ar, Dr et Er. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les résolutions et les déformations de ces singularités à l'aide de la théorie de Lie. En 1998 P. Slodowy et H. Cassens ont construit les déformations semiuniverselles des ℂ2/Γ à l'aide de la théorie des carquois ainsi que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989. En théorie de Lie, la classification des algèbres de Lie simples divisent ces dernières en deux classes: les algèbres de Lie de types Ar, Dr et Er qui sont simplement lacées, et celles de types Br, Cr, F4 et G2 appelées non-homogènes. A l'aide d'un second sous-groupe fini Γ' de SU2(ℂ) tel que Γ ⊲ Γ', P. Slodowy a étendu en 1978 la notion de singularité de Klein aux algèbres de Lie non-homogènes en ajoutant à ℂ2/Γ le groupe d'automorphismes Ω= Γ'/Γ du diagramme de Dynkin associé à la singularité. L'objectif de cette thèse est de généraliser la construction de H. Cassens et P. Slodowy à ces singularités de types Br, Cr, F4 et G2. Il en résultera des constructions explicites des déformations semiuniverselles de types inhomogènes sur les fibres desquelles le groupe Ω agit. Le passage au quotient d'une telle application révèle alors une déformation d'une singularité de type ℂ2/Γ' / Let Γ be a finite subgroup of SU2(ℂ). Then the quotient ℂ2/Γ can be embedded in ℂ3 as a surface with an isolated singularity. The quotient ℂ2/Γ is called a Kleinian singularity, after F. Klein who studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection with simply-laced Dynkin diagrams of types Ar, Dr and Er. In the 1970's E. Brieskorn and P. Slodowy took advantage of this connection to describe the resolutions and deformations of these singularities in terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic geometry. In Lie theory, the classification of simple Lie algebras allows for a separation in two classes: those simply-laced of types Ar, Dr and Er, and those of types Br, Cr, F4 and G2 called inhomogeneous. With the use of a second finite subgroup Γ’ of SU2(ℂ) such that Γ ⊲ Γ’, P. Slodowy extended in 1978 the definition of a Kleinian singularity to the inhomogeneous types by adding to ℂ2/Γ the group of automorphisms Ω= Γ’/Γ of the Dynkin diagram associated to the singularity. The purpose of this thesis is to generalize H. Cassens' and P. Slodowy's construction to the singularities of types Br, Cr, F4 and G2. It will lead to explicit semiuniversal deformations of inhomogeneous types on the fibers of which the group Ω acts. By quotienting such a map we obtain a deformation of a singularity ℂ2/Γ’
3

Processus stochastiques matriciels, systèmes de racines et probabilités non commutatives

Demni, Nizar 15 November 2007 (has links) (PDF)
On étudie quelques aspects de certaines diffusions matricielles pour lesquelles on utilise des outils d'analyse harmonique pour répondre à des questions de nature probabiliste : on commence par le processus de Laguerre, puis on s'intéresse au processus de Dunkl radial qui généralise le processus des valeurs propres de ces diffusions. On regarde ensuite le processus de Jacobi dans le cas où la taille de la matrice tend vers l'infini, ceci nous plonge dans le monde des probabilités libres. Le dernier chapitre est consacré à la résolution d'un problème de grandes déviations pour des statistiques de processus de Jacobi univariés.
4

Fonctions génératrices des polynômes de Hartley des algèbres de Lie simples de rang 2.

Pelletier, Xavier 09 1900 (has links)
Ce mémoire étudie deux familles de fonctions orthogonales, soit les fonctions d'orbite de Weyl et les fonctions d'orbite de Hartley. Chacune de ces familles est associée à une algèbre de Lie simple et cette recherche se limite aux algèbres A₂, C₂ et G₂ de rang 2. Les fonctions d'orbite de Weyl ont été largement étudiées depuis des années en raison de leurs propriétés exceptionnelles. Nouvellement, elles ont été utilisées pour générer des polynômes de Chebyshev généralisés et calculer les fonctions génératrices de ces polynômes pour les algèbres de Lie simples de rang 2. Les fonctions d'orbite de Hartley, quant à elles, ont été récemment introduites par Hrivnák et Juránek et l'étude de ces dernières ne fait que débuter. L'objectif de ce mémoire est de définir des polynômes de Chebyshev généralisés associés aux fonctions de Hartley et de calculer les fonctions génératrices de ceux-ci pour les algèbres A₂, C₂ et G₂. Le premier chapitre introduit les systèmes de racines et le groupe de Weyl, original et affine, ainsi que leurs domaines fondamentaux, afin que le lecteur ait les notations et définitions pour comprendre les chapitres suivants. Le deuxième chapitre présente et étudie les fonctions de Weyl. Il définit également leurs polynômes de Chebyshev généralisés et se termine en présentant les différentes fonctions génératrices de ces polynômes pour les algèbres de Lie simples de rang 2. Finalement, le troisième chapitre contient les résultats originaux; il expose les fonctions de Hartley et certaines de leurs propriétés. Il définit les polynômes de Chebyshev généralisés de celles-ci et énonce également leurs relations d'orthogonalité discrète. Il conclut en calculant les fonctions génératrices de ces polynômes pour les algèbres A₂, C₂ et G₂. / This master's thesis studies two families of orthogonal functions, the Weyl orbit functions and the Hartley orbit functions. Each of these families is associated to a simple Lie algebra and the present work is limited to the algebras A₂, C₂ and G₂ of rank 2. Weyl orbit functions have been widely studied for years because of their exceptional properties. Recently, these properties have been used to generate generalized Chebyshev polynomials and to compute the generating functions of these polynomials for the simple Lie algebras of rank 2. Hartley orbit functions, on the other hand, were recently introduced by Hrivnák and Juránek and the study of the latter has only begun. The objective of this thesis is to define the generalized Chebyshev polynomials of Hartley orbit functions and to compute their generating functions for the algebras A₂, C₂ and G₂. The first chapter introduces root systems and the Weyl group, original and affine, and their fundamental domains, so that the reader has the notations and definitions at hand to read the following chapters. The second chapter introduces and studies Weyl orbit functions. It also defines their generalized Chebyshev polynomials and ends by presenting the different generating functions of these polynomials for simple Lie algebras of rank 2. Finally, the third chapter contains the original contribution; it presents the Hartley functions and some of their properties. It defines the generalized Chebyshev polynomials of these and also states their discrete orthogonality relations. It concludes by computing the generating functions of these polynomials for the algebras A₂, C₂ and G₂.

Page generated in 0.0854 seconds