Spelling suggestions: "subject:"codistribution"" "subject:"bydistribution""
31 |
Statistical Inference for a New Class of Skew t Distribution and Its Related PropertiesBasalamah, Doaa 04 August 2017 (has links)
No description available.
|
32 |
Corrected LM goodness-of-fit tests with applicaton to stock returnsPercy, Edward Richard, Jr. 05 January 2006 (has links)
No description available.
|
33 |
Univariate GARCH models with realized varianceBörjesson, Carl, Löhnn, Ossian January 2019 (has links)
This essay investigates how realized variance affects the GARCH-models (GARCH, EGARCH, GJRGARCH) when added as an external regressor. The GARCH models are estimated with three different distributions; Normal-, Student’s t- and Normal inverse gaussian distribution. The results are ambiguous - the models with realized variance improves the model fit, but when applied to forecasting, the models with realized variance are performing similar Value at Risk predictions compared to the models without realized variance.
|
34 |
Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.Gilberto da Silva Matos 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.
|
35 |
Modelos multidimensionais da TRI com distribuições assimétricas para os traços latentes / Multidimensional IRT models with skew distributions for latent traits.Matos, Gilberto da Silva 15 December 2008 (has links)
A falta de alternativas ao modelo normal uni/multivariado já é um problema superado pois atualmente é possível encontrar inúmeros trabalhos que introduzem e desenvolvem generalizações da distribuição normal com relação `a assimetria, curtose e/ou multimodalidade (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006)). No contexto dos modelos unidimensionais da Teoria da Resposta ao Item (TRI), Bazán (2005) percebeu esta realidade e introduziu uma classe denominada PANA (Probito Assimétrico - Normal Assimétrica) a qual permite modelar possíveis comportamentos assimétricos de um modelo (uma probabilidade) de resposta ao item bem como a especificação de uma distribuição normal assimétrica para os traços latentes (unidimensionais) a qual é utilizada no processo de estimação. Motivado pela necessidade de melhor representar os fenômenos da área psicométrica (Heinen, 1996, p. 105) e da atual disponibilidade de distribuições elípticas assimétricas cujas propriedades são tão convenientes quanto aquelas devidas `a distribuição normal, a proposta do presente trabalho é apresentar uma extensão do modelo K-dimensional de 3 Parâmetros Probito (Kd3PP) com vetores de traços latentes normalmente distribuídos para o caso t-Assimétrico, gerando, assim, o que denominamos modelo Kd3PP-tA. Nossa proposta, portanto, pode ser considerada como uma extensão do trabalho desenvolvido por Bazán (2005) tanto no sentido de extender a distribuição unidimensional assimétrica dos traços latentes para o caso multidimensional quanto no que conscerne em considerar o achatamento (curtose) da distribuição. Nossa proposta também pode ser vista como uma extensão do trabalho de Béguin e Glas (2001) no sentido de desenvolver o método de estimação bayesiana dos modelos multidimensionais da TRI via DAGS (Dados Aumentados com Amostrador de Gibbs) para o caso em que os vetores de traços latentes comportam-se segundo uma distribuição multivariada t-Assimétrica. No desenvolvimento deste trabalho nos deparamos com uma das principais dificuldades encontradas no processo de estimação e inferência dos modelos multidimensionais da TRI que é a falta de identificabilidade e, com a intenção de ampliar e desmistificar nossos conhecimentos sobre um assunto ainda pouco explorado na literatura da TRI, apresentamos um estudo bibliográfico sobre este tema tanto sob o contexto da inferência clássica quanto bayesiana. Com o intuito de identificar situações particulares em que o uso de uma distribuição normal assimétrica para os traços latentes seja de maior relevância para a estimação e inferência dos parâmetros de item, bem como outros parâmetros relacionados à distribuição dos traços latentes, algumas análises sobre conjuntos de dados simulados são desenvolvidas. Como conclusão destas análises, podemos dizer que há uma melhora superficial quando a informação sobre uma possível assimetria na distribuição dos traços latentes não é ignorada. Além disso, os resultados favoreceram a seleção dos modelos que consideram distribuições assimétricas para os traços latentes, principalmente quando são considerados os modelos que possibilitam a estimação dos parâmetros de localização e escala da distribuição dos vetores de traços latentes. Duas principais contribuições que consideramos de ordem prática, são: a análise e a interpretação de testes através da estimação de modelos uni e multidimensionais da TRI que consideram tanto distribuições simétricas quanto assimétricas para os vetores de traços latentes e a disponibilização de uma função escrita em códigos R e C++ para a estimação dos modelos apresentados e desenvolvidos no presente trabalho. / The lack of alternatives to the univariate or multivariate normal model has been already solved because actually it has been possible to find several works that introduce and develop generalizations of the normal distribution in relation to the asymmetry, kurtosis and/or multimodality (Branco e Arellano-Valle (2004), Genton (2004), Arellano-Valle et al. (2006). In the context of unidimensional models of the Item Response Theory (IRT), Baz´an (2005) observed this fact and introduced a class called PANA (Probito Assimétrico - Normal Assimétrica) which allows to take account for asymmetry in the shape of an item response model (probability) and the specification of a skew normal distribution for unidimensional latent traits which is used in the estimation process. Motivated by the need to better represent the phenomenon of psychometric area (Heinen, 1996, p. 105) and the current availability of skew elliptical distributions whose properties are as convenient as those due to normal distribution, the proposal of this work is to provide an extension of multidimensional 3 Parameters Probit model (Kd3PP) where latent traits vectors are normally distributed for the case of Skew-t distribution (Sahu et al., 2003), generating therefore what we call Kd3PP-St model. Our proposal, therefore, can be regarded as an extension of the work of Bazán (2005) in two ways: the first is extending the unidimensional skew normal distribution of latent traits to the multidimensional case and second in the sense to consider the flattening (kurtosis) of this distribution. Our proposal can also be seen as an extension of the work of B´eguin e Glas (2001) in the sense that we develop the Bayesian estimation method of the 3 parameters multidimensional item response model by DAGS (Augmentated Data with Gibbs sampling) for the case where the latent trait vectors behave according to a Skew-t multivariate distribution. In the development of this work we come across one of the main difficulties encountered in the process of estimation and inference of multidimensional IRT models which is the lack of identifiabilitie and, with the intent to demystify and expand our knowledge on a subject still little explored in the literature of the IRT, we present a bibliographical study on this subject both in the context of classical and Bayesian inference. In order to identify particular situations where the use of a skew normal distribution is more relevant to the estimation and inference of item parameters as well as other parameters related to the distribution of latent traits, some analyses on simulated data sets are developed. As results of these analyses, we can say that there is a modest improvement when information about a possible asymmetry in the distribution of latent traits is not ignored. Moreover, the results favored the selection of models that consider asymmetric distributions for latent traits, especially when models that enable the estimation of parameters of location and scale from this distribution are considered. Two main contributions that we consider of pratical interest are: analysis and interpretations of tests using unidimensional and multidimensional IRT models that consider both simetric and skewed distributions for the vectors of latent traits and a function written in R and C++ language program that is made disponible for the estimation of models treated in this work.
|
36 |
探討標準化偏斜Student-t分配關聯結構模型之抵押債務債券之評價 / Pricing CDOs with Standardized Skew Student-t Distribution Copula Model黃于騰, Huang, Yu Teng Unknown Date (has links)
在市場上最常被用來評價抵押債務債券(Collateralized Debt Obligation, CDO)的分析方法即為應用大樣本同質性資產組合(Large Homogeneous Portfolio, LHP)假設之單因子關聯結構模型(One Factor Copula Model)。由過去文獻指出,自2008年起,抵押債務債券的商品結構已漸漸出現改變,而目前所延伸之各種單因子關聯結構模型在新型商品的評價結果中皆仍有改善空間。
在本文中使用標準化偏斜Student-t分配(Standardized Skew Student-t distribution, SSTD)取代傳統的高斯分配進行抵押債務債券之分券的評價,此分配擁有控制分配偏態與峰態的參數。但是與Student-t分配相同,SSTD同樣不具備穩定的摺積(convolution)性質,因此在評價過程中會額外消耗部分時間。而在實證分析中,以單因子SSTD關聯結構模型評價擔保債務債券新型商品之分券時得到了較佳的結果,並且比單因子高斯關聯結構模型擁有更多參數以符合實際需求。 / The most widely used method for pricing collateralized debt obligation(CDO) is the one factor copula model with Large Homogeneous Portfolio assumption. Based on the literature of discussing, the structure of CDO had been changed gradually since 2008. The effects for pricing new type CDO tranches in the current extended one factor copula models are still improvable.
In this article, we substitute the Gaussian distribution with the Standardized Skew Student-t distribution(SSTD) for pricing CDO tranches, and it has the features of heavy-tail and skewness. However, similar to the Student-t distribution, the SSTD is not stable under convolution as well. For this reason, it takes extra time in the pricing process. The empirical analysis shows that the one factor SSTD copula model has a good effect for pricing new type CDO tranches, and furthermore it brings more flexibility to the one factor Gaussian copula model.
|
37 |
Markovo grandinės Monte-Karlo metodo tyrimas ir taikymas / Study and application of Markov chain Monte Carlo methodVaičiulytė, Ingrida 09 December 2014 (has links)
Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu. / Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text]
|
38 |
Study and application of Markov chain Monte Carlo method / Markovo grandinės Monte-Karlo metodo tyrimas ir taikymasVaičiulytė, Ingrida 09 December 2014 (has links)
Markov chain Monte Carlo adaptive methods by creating computationally effective algorithms for decision-making of data analysis with the given accuracy are analyzed in this dissertation. The tasks for estimation of parameters of the multivariate distributions which are constructed in hierarchical way (skew t distribution, Poisson-Gaussian model, stable symmetric vector law) are described and solved in this research. To create the adaptive MCMC procedure, the sequential generating method is applied for Monte Carlo samples, introducing rules for statistical termination and for sample size regulation of Markov chains. Statistical tasks, solved by this method, reveal characteristics of relevant computational problems including MCMC method.
Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, constructed in the dissertation. Tests made with sportsmen data and financial data of enterprises, belonging to health-care industry, confirmed that numerical properties of the method correspond to the theoretical model. The methods and algorithms created also are applied to construct the model for sociological data analysis. Tests of algorithms have shown that adaptive MCMC algorithm allows to obtain estimators of examined distribution parameters in lower number of chains, and reducing the volume of calculations approximately two times. The algorithms created in this dissertation can be used to test the systems of stochastic type and to solve other statistical... [to full text] / Disertacijoje nagrinėjami Markovo grandinės Monte-Karlo (MCMC) adaptavimo metodai, skirti efektyviems skaitiniams duomenų analizės sprendimų priėmimo su iš anksto nustatytu patikimumu algoritmams sudaryti. Suformuluoti ir išspręsti hierarchiniu būdu sudarytų daugiamačių skirstinių (asimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo simetrinio vektoriaus dėsnio) parametrų vertinimo uždaviniai. Adaptuotai MCMC procedūrai sukurti yra pritaikytas nuoseklaus Monte-Karlo imčių generavimo metodas, įvedant statistinį stabdymo kriterijų ir imties tūrio reguliavimą. Statistiniai uždaviniai išspręsti šiuo metodu leidžia atskleisti aktualias MCMC metodų skaitmeninimo problemų ypatybes. MCMC algoritmų efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio modeliavimo metodu. Atlikti eksperimentai su sportininkų duomenimis ir sveikatos industrijai priklausančių įmonių finansiniais duomenimis patvirtino, kad metodo skaitinės savybės atitinka teorinį modelį. Taip pat sukurti metodai ir algoritmai pritaikyti sociologinių duomenų analizės modeliui sudaryti. Atlikti tyrimai parodė, kad adaptuotas MCMC algoritmas leidžia gauti nagrinėjamų skirstinių parametrų įvertinius per mažesnį grandžių skaičių ir maždaug du kartus sumažinti skaičiavimų apimtį. Disertacijoje sukonstruoti algoritmai gali būti pritaikyti stochastinio pobūdžio sistemų tyrimui ir kitiems statistikos uždaviniams spręsti MCMC metodu.
|
39 |
Méthodes probabilistes pour l'évaluation de risques en production industrielle / Probabilistic methodes for risks evaluation in industrial productionOger, Julie 16 April 2014 (has links)
Dans un contexte industriel compétitif, une prévision fiable du rendement est une information primordiale pour déterminer avec précision les coûts de production et donc assurer la rentabilité d'un projet. La quantification des risques en amont du démarrage d'un processus de fabrication permet des prises de décision efficaces. Durant la phase de conception d'un produit, les efforts de développement peuvent être alors identifiés et ordonnés par priorité. Afin de mesurer l'impact des fluctuations des procédés industriels sur les performances d'un produit donné, la construction de la probabilité du risque défaillance est développée dans cette thèse. La relation complexe entre le processus de fabrication et le produit conçu (non linéaire, caractéristiques multi-modales...) est assurée par une méthode de régression bayésienne. Un champ aléatoire représente ainsi, pour chaque configuration du produit, l'information disponible concernant la probabilité de défaillance. Après une présentation du modèle gaussien, nous décrivons un raisonnement bayésien évitant le choix a priori des paramètres de position et d'échelle. Dans notre modèle, le mélange gaussien a priori, conditionné par des données mesurées (ou calculées), conduit à un posterior caractérisé par une distribution de Student multivariée. La nature probabiliste du modèle est alors exploitée pour construire une probabilité de risque de défaillance, définie comme une variable aléatoire. Pour ce faire, notre approche consiste à considérer comme aléatoire toutes les données inconnues, inaccessibles ou fluctuantes. Afin de propager les incertitudes, une approche basée sur les ensembles flous fournit un cadre approprié pour la mise en œuvre d'un modèle bayésien imitant le raisonnement d'expert. L'idée sous-jacente est d'ajouter un minimum d'information a priori dans le modèle du risque de défaillance. Notre méthodologie a été mise en œuvre dans un logiciel nommé GoNoGo. La pertinence de cette approche est illustrée par des exemples théoriques ainsi que sur un exemple réel provenant de la société STMicroelectronics. / In competitive industries, a reliable yield forecasting is a prime factor to accurately determine the production costs and therefore ensure profitability. Indeed, quantifying the risks long before the effective manufacturing process enables fact-based decision-making. From the development stage, improvement efforts can be early identified and prioritized. In order to measure the impact of industrial process fluctuations on the product performances, the construction of a failure risk probability estimator is developed in this thesis. The complex relationship between the process technology and the product design (non linearities, multi-modal features...) is handled via random process regression. A random field encodes, for each product configuration, the available information regarding the risk of non-compliance. After a presentation of the Gaussian model approach, we describe a Bayesian reasoning avoiding a priori choices of location and scale parameters. The Gaussian mixture prior, conditioned by measured (or calculated) data, yields a posterior characterized by a multivariate Student distribution. The probabilistic nature of the model is then operated to derive a failure risk probability, defined as a random variable. To do this, our approach is to consider as random all unknown, inaccessible or fluctuating data. In order to propagate uncertainties, a fuzzy set approach provides an appropriate framework for the implementation of a Bayesian model mimicking expert elicitation. The underlying leitmotiv is to insert minimal a priori information in the failure risk model. Our reasoning has been implemented in a software called GoNoGo. The relevancy of this concept is illustrated with theoretical examples and on real-data example coming from the company STMicroelectronics.
|
40 |
Segmentação de placas de esclerose múltipla em imagens de ressonância magnética usando modelos de mistura de distribuições t-Student e detecção de outliersFreire, Paulo Guilherme de Lima 15 February 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-09-22T11:50:45Z
No. of bitstreams: 1
DissPGLF.pdf: 2510277 bytes, checksum: ac0bc495fe911118e100ddeeaea3b4d9 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T14:47:09Z (GMT) No. of bitstreams: 1
DissPGLF.pdf: 2510277 bytes, checksum: ac0bc495fe911118e100ddeeaea3b4d9 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T14:47:16Z (GMT) No. of bitstreams: 1
DissPGLF.pdf: 2510277 bytes, checksum: ac0bc495fe911118e100ddeeaea3b4d9 (MD5) / Made available in DSpace on 2016-10-10T14:47:24Z (GMT). No. of bitstreams: 1
DissPGLF.pdf: 2510277 bytes, checksum: ac0bc495fe911118e100ddeeaea3b4d9 (MD5)
Previous issue date: 2016-02-15 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Multiple Sclerosis (MS) is an inflammatory demyelinating (that is, with myelin loss) disease of the Central Nervous System (CNS). It is considered an autoimmune disease in which the immune system wrongly recognizes the myelin sheath of the CNS as an external element and attacks it, resulting in inflammation and scarring (sclerosis) of multiple areas of CNS’s white matter. Multi-contrast magnetic resonance imaging (MRI) has been successfully used in diagnosing and monitoring MS due to its excellent properties such as high resolution and good differentiation between soft tissues. Nowadays, the preferred method to segment MS lesions is the manual segmentation, which is done by specialists with limited help of a computer. However, this approach is tiresome, expensive and prone to error due to inter- and intra-variability between observers caused by low contrast on lesion edges. The challenge in automatic detection and segmentation of MS lesions in MR images is related to the variability of size and location of lesions, low contrast due to partial volume effect and the high range of forms that lesions can take depending on the stage of the disease. Recently, many researchers have turned their efforts into developing techniques that aim to accurately measure volumes of brain tissues and MS lesions, and also to reduce the amount of time spent on image analysis. In this context, this project proposes the study and development of an automatic computational technique based on an outlier detection approach, Student’s
t-distribution finite mixture models and probabilistic atlases to segment and measure MS
lesions volumes in MR images. / Esclerose Múltipla (EM) é uma doença inflamatória e desmielinizante (isto é, com perda
de mielina) do sistema nervoso central (SNC). É considerada uma doença autoimune a
qual o sistema imunológico reconhece erroneamente a bainha de mielina do SNC como
um elemento externo e então a ataca, resultando em inflamação e formação de cicatrizes
gliais (escleroses) em múltiplas áreas da substância branca do SNC. O imageamento multi-
contraste por ressonância magnética (RM) tem sido usado clinicamente com muito sucesso
para o diagnóstico e monitoramento da EM devido às suas excelentes propriedades como
alta resolução e boa diferenciação de tecidos moles. Atualmente, o método utilizado para
a segmentação de lesões de EM é o delineamento manual em imagens 3D de RM, o qual é
realizado por especialistas com ajuda limitada do computador. Entretanto, tal procedimento
é custoso e propenso à variabilidade inter e intraobservadores devido ao baixo contraste das
bordas das lesões. A grande dificuldade na detecção e segmentação automáticas das le-
sões de EM em imagens de RM está associada às suas variações no tamanho e localização,
baixo contraste decorrente do efeito de volume parcial e o amplo espectro de aparências
(realçadas, não-realçadas, black-holes) que elas podem ter, dependendo do estado evolutivo
da doença. Atualmente, vários pesquisadores têm voltado seus esforços para o desenvol-
vimento de técnicas que visam diminuir o tempo gasto na análise das imagens e medir, de
maneira mais precisa, o volume dos tecidos cerebrais e das lesões de EM. Nesse contexto,
este projeto propõe o estudo e o desenvolvimento de uma técnica computacional automá-
tica, baseada na abordagem de detecção de outliers e usando modelos de misturas finitas de
distribuições t-Student e atlas probabilísticos para a segmentação e medição do volume de
lesões de EM em imagens de RM. / FAPESP: 2014/00019-6
|
Page generated in 0.115 seconds