11 |
Performance of resonant radar target identification algorithms using intra-class weighting functions /Mustafa, Ahmad M. January 1985 (has links)
No description available.
|
12 |
Improved models for the extraction and application of complex natural resonances to target identification /Lai, Chun-yue A. January 1986 (has links)
No description available.
|
13 |
Molybdenum targets for production of 99mTc by a medical cyclotronMatei, L., McRae, G., Gelbart, W., Niculae, D., Craciun, L., Abeysekera, B., Johnson, R. R. 19 May 2015 (has links) (PDF)
Introduction
Alternative methods for producing the medical imaging isotope 99mTc are actively being developed around the world in anticipation of the imminent shutdown of the National Research Universal (NRU) reactor in Chalk River, Ontario, Canada and the high flux reactor (HFR) in Petten, Holland that together currently produce up to 80 % of the world’s supply through fission. The most promising alternative methods involve accelerators that focus Bremsstrahlung radiation or protons on metallic targets comprised of 100Mo and a supporting material used to conduct heat away during irradiation. As an example, the reaction 100Mo(p,2n)99mTc provides a direct route that can be incorporated into routine production in regional nuclear medicine centers that possess medical cyclotrons for production of other isotopes, such as those used for Positron Emission Tomography (PET).
The targets used to produce 99mTc are subject to a number of operational constraints. They must withstand the temperatures generated by the irradiation and be fashioned to accommodate temperature gradients from in situ cooling. The targets must be resilient, which means they cannot disintegrate during irradiation or post processing, because of the radioactive nature of the products. Yet, the targets must be easily post-processed to separate the 99mTc. In addition, the method used to manufacture the targets must not be wasteful of the 100Mo, because of its cost (~$2/mg). Any manufacturing process should be able to function remotely in a shielded space to accommodate the possibility of radioactive recycled target feedstock. There are a number of methods that have been proposed for large-scale target manufacturing including electrophoretic deposition, pressing and sinter-ing, electroplating and carburization [1]. How to develop these methods for routine production is an active business [2,3]. From the industrial perspective, plasma spraying showed promising results initially [4], but the process became very expensive requiring customized equipment in order to reduce losses because of overspray,which also required a large inventory of expen-sive feedstock. In this paper we report the ex-perimental validation of an industrial process for production of targets comprising a Mo layer and a copper support.
Materials and methods
Target Design
Targets have been manufactured for irradiation at 15 MeV. Two targets are shown in FIG. 1: one as-manufactured and another after irradiation; no visible changes were observed following irradiation. The supporting circular copper (C101) disks have diameters of 24 mm and thickness of 1.6 mm. The molybdenum in the center of the target is fully dense with thickness 230 μm determined from SEM cross-sections.Targets have also been manufactured for irradi-ation in a general-purpose target holder designed to be attached to all makes of cyclotrons found in regional nuclear medicine centers. The elliptical targets were designed for high-volume production of 99mTc with 15 MeV protons at currents of 400 µA with 15% collimation [4]. The elliptical shape reduces the heat flux associated with high current sources. The cooling channels on the back of the target are designed to with-stand the high temperature generated during Irradiation.
A thermal simulation of expected temperatures during irradiation is shown in FIG. 3. The center of the target is expected to reach 260 oC during irradiation. The elliptical targets were formed from a 27 mm C101 copper plate with width 22 mm and length 55 mm. The molybdenum in the center of the target is fully dense with thickness 60 m de-termined from SEM cross-sections. FIG. 4 shows the molybdenum deposition in the center of the target in a form of an ellipse (38×10 mm).
Results and Conclusions
Circular targets have been produced and suc-cessfully irradiated for up to 5 h with a proton beam with energy 15 MeV and current 50 µA. (FIG. 1). The targets were resilient. Before irradi-ation the targets were subjected to mechanical shock tests and thermal gradients with no ob-servable effect. After irradiation there was no indication of any degradation. The manufacturing process produced 20 consistently reproducible targets within an hour with a molybdenum loss of less than 2 %. After irradiation the targets were chemically processed and the products characterized by Ge-HP gamma spectrometry. Only Tc isotopes were found. No other contami-nants were identified after processing. The de-tails of the separation and purification are de-scribed elsewhere [5].
Circular targets suitable for low-volume produc-tion of 99mTc have been manufactured and test-ed. The targets have been shown to meet the required operation constraints: the targets are resilient withstanding mechanical shock and irradiation conditions; they are readily produced with minimal losses; and post-processing after irradiation for 5 h has been shown to produce 99mTc.
Elliptical targets suitable for high-volume pro-duction of 99mTc with high power cyclotrons have been manufactured (FIG. 4). Like the circular targets, the elliptical targets are readily pro-duced with minimal losses and are able to with-stand mechanical shock and thermal gradients; however, they have yet to be irradiated.
|
14 |
Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under UncertaintySue Wing, Ian., Ellerman, A. Denny., Song, Jaemin. 01 1900 (has links)
We elucidate the differences between absolute and intensity-based limits of CO2 emission when there is uncertainty about the future. We demonstrate that the two limits are identical under certainty, and rigorously establish their relative attractiveness under two criteria: preservation of expectations—the minimization of the difference between the actual level and the initial expectation of abatement associated with a one-shot emission target, and temporal stability—the minimization of the variance of abatement due to fluctuations in emissions and GDP over time. Empirical tests of these theoretical propositions indicate that intensity caps are preferable for a broad range of emission reduction commitments. This finding is robust for developing countries, but is more equivocal for developed economies. / Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/). / ISW was supported by U.S. Department of Energy Office of Science (BER) Grant No. DE-FG02-02ER63484. ADE and JMS were supported by the MIT Joint Program on the Science and Policy of Global Change, funded through a government-industry partnership including U.S. Department of Energy Office of Science (BER) Grant No. DE-FG02-94ER61937, U.S. Environmental Protection Agency Cooperative Agreement No. XA-83042801-0, and a group of corporate sponsors from the U.S. and other countries.
|
15 |
Characterisation and structural studies on dog heart cyclic nucleotide phosphodiesteraseClapham, John Christopher January 1997 (has links)
No description available.
|
16 |
Feature-based exploitation of multidimensional radar signaturesRaynal, Ann Marie 31 August 2012 (has links)
An important problem in electromagnetics is that of extracting, interpreting, and exploiting scattering mechanisms from the scattered field of a target. Termed “features”, these physics-based descriptions of scattering phenomenology have many and diverse applications such as target identification, classification, validation, and imaging. In this dissertation, the feature extraction, analysis, and exploitation of both synthetic and measured multidimensional radar signatures are investigated. Feature extraction is first performed on simulated data of the highfrequency electromagnetics solver Xpatch. The scattered, far-field of an electrically large target is well-approximated by a discrete set of points known as scattering centers. Xpatch yields three-dimensional (3D) scattering centers of a target one aspect angle at a time by using the shooting and bouncing ray technique and a computer-aided design (CAD) model of the target. The feature extraction technique groups scattering centers across multiple angles that pertain to the same scattering mechanism. Using a nearest neighbor clustering algorithm, this association is carried-out in a multidimensional grid of scattering center angle, bounce, and spatial location, wherein distinct scattering mechanisms are assumed to be non-overlapping. Synthetic monostatic and bistatic feature sets are extracted and analyzed using this algorithm. Additionally, feature sets are exploited to assist humans in electromagnetic CAD model validation. The generation of target CAD models is a challenging, resource-limited, and human-experience-based process. Target features extracted from a CAD model in question are compared individually to measured data from the physical target by projection of their radar signatures. CAD model disagreements such as missing, added, or dimensionally inaccurate components, as well as measurement imperfections are analyzed. Target traceback information of the features identifies flawed areas of the model. The projection value quantifies the degree of disagreement. The feature extraction methodology is next modified for measured radar signatures which lack readily available scattering center and bounce information. First, many ground plane synthetic aperture radar images of overlapping, limited apertures in azimuth are formed from the measurement data. Then, two-dimensional scattering centers of all images are estimated using a modified CLEAN algorithm. Feature extraction is lastly performed as with Xpatch data, though a reduction in grid dimensionality and orthogonality occurs. Finally, measured feature sets are exploited for sparse elevation 3D imaging and improved CAD model validation. The first application estimates the truth 3D scattering center of each feature using linear least squares to then visualize a composite 3D image of the target. The second application projects both synthetic and measured feature radar signatures to mitigate errors from the intersection of features in the combined measurement signature. / text
|
17 |
Four essays on monetary and fiscal policy and an investigation on the impact of insolvency risk on aggregate investmentLeith, Campbell Blair January 1999 (has links)
No description available.
|
18 |
Feature-based exploitation of multidimensional radar signaturesRaynal, Ann Marie, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
|
19 |
Radar imaging for moving targetsTeo, Beng Koon William. January 2009 (has links) (PDF)
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, June 2009. / Thesis Advisor(s): Borden, Brett H. "June 2009." Description based on title screen as viewed on July 14, 2009. Author(s) subject terms: radar imaging, moving targets, point spread function, ambiguity function. Includes bibliographical references (p. 73-75). Also available in print.
|
20 |
Polyamine conjugates with potential as therapeutic targetsCarrington, Simon January 1998 (has links)
No description available.
|
Page generated in 0.0216 seconds