• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Genetic engineering of the primary/secondary metabolic interface in tobacco BY-2 cells

Hall-Ponselè, Andrew M. January 2014 (has links)
The supply of precursors from primary metabolism is often overlooked when engineering secondary metabolism for increased product yields. This is because precursor supply may be assumed to be non-limiting, and it is considered difficult to engineer primary metabolism, because control of carbon flow (flux) is generally distributed among most enzymes of the pathway. The aim of this thesis was to increase the production of sterols, part of the isoprenoid class of secondary metabolites, in tobacco (Nicotiana tabacum) Bright Yellow 2 (BY-2) cell cultures. This was achieved by genetically engineering increased activity of mitochondrial citrate synthase, an enzyme of the tricarboxylic acid (TCA) cycle that is involved in the provision of cytosolic acetyl coenzyme A, the primary metabolite precursor to sterols. Metabolic flux analysis revealed that citrate synthase exerts significant control over cyclic TCA cycle flux in BY-2 cells and suggested that increasing the activity of downstream enzymes within secondary metabolism could lead to a further redirection of TCA-cycle-derived precursors into sterol biosynthesis. Attempts were made to achieve this by genetically engineering increased activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), a key enzyme of secondary metabolism involved in sterol biosynthesis. Consistent with previous research, transgenic lines had increased sterol levels. However, the high sterol phenotype was unstable, and attempts to co-express HMGR and citrate synthase genes were unsuccessful. The thesis demonstrates that increasing the provision of precursors to secondary metabolites can result in increased yields of those secondary metabolites but suggests that in most cases the activity of enzymes within secondary metabolism has a greater effect on those yields. It also reveals that single enzymes can exert significant control of flux within primary metabolism, although the control exerted by specific enzymes probably changes with the demands placed on metabolism.
12

Kompartementalisierung des Kohlenhydrat-Stoffwechsels in Toxoplasma gondii / Compartementation of the C-Metabolism in Toxoplasma gondii

Fleige, Tobias 01 November 2006 (has links)
No description available.
13

Harnessing the anabolic properties of dark respiration to enhance sink activity at elevated CO2 using Arabidopsis thaliana L. with partially-suppressed mitochondrial pyruvate dehydrogenase kinase

Weraduwage, Sarathi 17 May 2013 (has links)
Sink limitations in plants reduce the potential for photosynthesis and yield, particularly under conditions that favour enhanced source activity such as elevated CO2 (EC). Dark respiration, considered catabolic, has rarely been exploited to enhance sink activity in plants. Arabidopsis thaliana L. lines with partially-suppressed mitochondrial pyruvate dehydrogenase (mtPDH) kinase (mtPDHK), a negative post-translational regulator of the mtPDH complex, was shown previously to have both elevated mtPDH complex activity and increased seed weight and oil content at ambient CO2 (AC), suggesting an enhancement of sink activity. The mtPDH links glycolysis with the tricarboxylic acid (TCA) cycle. It was hypothesized that Arabidopsis having suppressed mtPDHK will display their greatest plant productivity at EC through a combined enhancement of source and sink activities. Control and transgenic Arabidopsis having either constitutive or seed-specific expression of antisense mtPDHK were grown at either AC or EC. Expression of mtPDHK and mtPDH complex activity in rosette leaves and reproductive tissues were measured, which required the development of an assay to quantify mtPDH activity. Vegetative and reproductive growth over time, seed oil parameters, and leaf net C exchange were also quantified. A parabolic relationship was found between mtPDHK expression and mtPDH activity, reflecting a role for mtPDH in balancing photosynthetic and respiratory processes. A number of growth and seed oil parameters were improved in transgenic lines, particularly at EC; many of these parameters showed a significant linear or quadratic correlation with mtPDHK expression and mtPDH activity. The proportion of very long chain fatty acids was increased in transgenic lines. Leaf net C exchange was enhanced at AC and EC, and particularly in lines showing repression of mtPDHK. The greatest enhancement in total seed and oil productivity was found for the constitutive lines 104 and 31 at EC (up to 2.8 times). These two lines exhibited a significant increase in inflorescence size, an increase in leaf water use efficiency, the lowest rate of mtPDH complex inactivation by ATP, and an intermediary enhancement of mtPDH complex activity in seeds. Thus, it is concluded that the mtPDH plays a key role in regulating sink and source activities in plants. / Natural Sciences and Engineering Research Council (NSERC) through the Green Crop Networks Research Network; Ontario Graduate Scholarship; Syngenta Graduate Scholarship; Ball Farm Services and Agrico Canada Ltd. Scholarship; Mrs. Fred Ball Scholarship; Arthur D. Latornell Scholarship; Hoskins Scholarship; Robb Travel Grant; Registrars and the Deans Scholarship and travel awards and bursaries from the University of Guelph, and the Ontario Agricultural College.
14

Quantifying metabolic fluxes using mathematical modeling / Kvantifiering av metabola flöden genom matematisk modellering

Viberg, Victor January 2018 (has links)
Background Cancer is one of the leading causes of death in Sweden. In order to develop better treatments against cancer we need to better understand it. One area of special interest is cancer metabolism and the metabolic fluxes. As these fluxes cannot be directly measured, modeling is required to determine them. Due to the complexity of cell metabolism, some limitations in the metabolism model are required. As the TCA-cycle (TriCarboxylic Acid cycle) is one of the most important parts of cell metabolism, it was chosen as a starting point. The primary goal of this project has been to evaluate the previously constructed TCA-cycle model. The first step of the evaluation was to determine the CI (Confidence Interval) of the model parameters, to determine the parameters’ identifiability. The second step was to validate the model to see if the model could predict data for which the model had not been trained for. The last step of the evaluation was to determine the uncertainty of the model simulation. Method The TCA-cycle model was created using Isotopicaly labeled data and EMUs (ElementaryMetabolic Units) in OpenFlux, an open source toolbox. The CIs of the TCA-cycle model parameters were determined using both OpenFlux’s inbuilt functionality for it as well as using amethod called PL (Profile Likelihood). The model validation was done using a leave one out method. In conjunction with using the leave on out method, a method called PPL (Prediction Profile Likelihood) was used to determine the CIs of the TCA-cycle model simulation. Results and Discussion Using PL to determine CIs had mixed success. The failures of PL are most likely caused by poor choice of settings. However, in the cases in which PL succeeded it gave comparable results to those of OpenFLux. However, the settings in OpenFlux are important, and the wrong settings can severely underestimate the confidence intervals. The confidence intervals from OpenFlux suggests that approximately 30% of the model parameters are identifiable. Results from the validation says that the model is able to predict certain parts of the data for which it has not been trained. The results from the PPL yields a small confidence interval of the simulation. These two results regarding the model simulation suggests that even though the identifiability of the parameters could be better, that the model structure as a whole is sound. Conclusion The majority of the model parameters in the TCA-cycle model are not identifiable, which is something future studies needs to address. However, the model is able to to predict data for which it has not been trained and the model has low simulation uncertainty.
15

FUNCTIONAL CHARACTERIZATION OF FAM210A PROTEIN IN SKELETAL MUSCLE AND MUSCLE STEM CELLS

Jingjuan Chen (18290026) 02 April 2024 (has links)
<p dir="ltr">Skeletal muscle accounts for 40% of total body weight and the homeostasis of muscle tissue is critical in maintaining proper body function. Skeletal muscle develops during the embryonic stages from the muscle progenitor cells derived from the dermomyotome structure. The myogenic progenitor cells contribute to the primary myogenesis by forming the primary myotubes which are the founding structures that the secondary myogenesis continues to build on. A portion of the myogenic progenitor cells makes up the adult muscle stem cells residing in homeostatic muscle tissue. The adult muscle stem cells contribute substantially for the adult muscle regeneration. Due to the significance of the muscle tissue and the importance of muscle stem cells, dysregulation of the muscle homeostasis or the muscle stem cell homeostasis will result in severe pathological conditions such as myopathy.</p><p dir="ltr">Mitochondria are cellular organelles that are responsible for generating energy needed for cellular processes, especially for muscle tissue where muscle contraction requires the presence of ATP. On the other hand, mitochondria also serve as signaling molecules and provide macromolecules for the biosynthesis. FAM210A (Family With Sequence Similarity 210 Member A) protein was shown to impact the lean mass of human subjects yet a detailed study on the effect of FAM210A in skeletal muscle was not performed, nor has the molecular mechanisms through which FAM210A function been elucidated. Therefore, I take on the task to unveil the function of FAM210A in muscle development, muscle homeostasis and muscle stem cell behavior by using a combination of mouse models with different myogenic promoters to target <i>Fam210a</i> at different developmental stages.</p><p dir="ltr">In the first part of the thesis, I investigated the role of FAM210A in post differentiation myofibers. Using the <i>Myl1</i><sup><em>Cre</em></sup> driven deletion of <i>Fam210a</i>, I found that <i>Fam210a</i><sup><em>MKO</em></sup> had normal development before 3 weeks of age, but the growth was stagnant from 4 weeks on, and the mice did not survive past 8 weeks of age. I found that the assembly of the ribosomes in the <i>Fam210a</i><sup><em>MKO</em></sup> was defective, leading to impaired translation which attenuated the muscle atrophy phenotype. I identified through proteomics that the mitochondrial autophagy and proteostatic control pathways were significantly induced yet mitochondrial organization and energetic proteins were downregulated. Metabolomics analysis showed that the signaling metabolite acetyl-CoA was increased in the <i>Fam210a</i><sup><em>MKO</em></sup> which led to increased protein acetylation, specifically, we showed that the ribosomal proteins were hyperacetylated, and that the acetylation increase was elicited by the <i>Fam210a</i>-null mitochondria.</p><p dir="ltr">In the second part of the thesis, I investigated the function of FAM210A in muscle progenitor cells. In the <i>FamMKO</i> mice, I found that deletion of <i>Fam210a</i> from embryonic myogenic progenitor cells led to developmental arrest and postnatal death at day 6. In the <i>FamPKO</i> mice, I found that <i>Fam210a</i> is needed for adult muscle stem cell to contribute to regeneration. Loss of <i>Fam210a</i> leads to the regenerative defects when the muscle was exposed to injury cues. We further showed that <i>Fam210a</i> deletion in muscle stem cells resulted in disruption of the proteostatic control over muscle stem cell activation, thereby forbidding the translational increase necessary to facilitate activation and proliferation. Furthermore, I showed that <i>Fam210a</i> deletion leads to excessive OPA1 cleavage, which contributes to the regenerative failure of muscle stem cells as fusion is required for the mitochondrial network remodeling during regeneration. Therefore, <i>Fam210a</i> safeguards the mitochondrial network and proteostasis during regeneration.</p><p dir="ltr">In summary, my studies characterized the functional contribution of FAM210A during embryonic muscle development, muscle mass maintenance and adult muscle stem cell homeostasis. The regulation of FAM210A in these three processes impinge on the translational regulation. My studies further demonstrated the importance of mitochondrial regulated protein translation in skeletal muscle and muscle stem cells.</p>
16

Investigating the porphyrias through analysis of biochemical pathways.

Ruegg, Evonne Teresa Nicole January 2014 (has links)
ABSTRACT The porphyrias are a diverse group of metabolic disorders arising from diminished activity of enzymes in the heme biosynthetic pathway. They can present with acute neurovisceral symptoms, cutaneous symptoms, or both. The complexity of these disorders is demonstrated by the fact that some acute porphyria patients with the underlying genetic defect(s) are latent and asymptomatic while others present with severe symptoms. This indicates that there is at least one other risk factor required in addition to the genetic defect for symptom manifestation. A systematic review of the heme biosynthetic pathway highlighted the involvement of a number of micronutrient cofactors. An exhaustive review of the medical literature uncovered numerous reports of micronutrient deficiencies in the porphyrias as well as successful case reports of treatments with micronutrients. Many micronutrient deficiencies present with symptoms similar to those in porphyria, in particular vitamin B6. It is hypothesized that a vitamin B6 deficiency and related micronutrient deficiencies may play a major role in the pathogenesis of the acute porphyrias. In order to further investigate the porphyrias, a computational model of the heme biosynthetic pathway was developed based on kinetic parameters derived from a careful analysis of the literature. This model demonstrated aspects of normal heme biosynthesis and illustrated some of the disordered biochemistry of acute intermittent porphyria (AIP). The testing of this model highlighted the modifications necessary to develop a more comprehensive model with the potential to investigated hypotheses of the disordered biochemistry of the porphyrias as well as the discovery of new methods of treatment and symptom control. It is concluded that vitamin B6 deficiency might be the risk factor necessary in conjunction with the genetic defect to trigger porphyria symptoms.

Page generated in 0.046 seconds