• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 22
  • 10
  • 9
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 200
  • 51
  • 45
  • 30
  • 26
  • 22
  • 19
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

A system study of sparse aperture sensors in remote sensing applications with explicit phase retrieval /

Daniel, Brian. January 2009 (has links)
Thesis (Ph.D.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (189-193).
102

Techniques in high resolution observations from the ground and space, and imaging of the merging environments of radio galaxies at redshift 1 to 4

Steinbring, Eric 03 August 2018 (has links)
High resolution imaging and spectroscopy are invaluable tools for extragalactic astronomy. Galaxies with redshifts of 1 or more subtend a very small angle on the sky—typically, only about an arcsecond. Unfortunately, this is also approximately the angular resolution achieved with a ground-based telescope regardless of its aperture. Atmospheric turbulence ruins the image before it reaches the telescope but the emerging technology of adaptive optics (AO) gives the observer the possibility, within limitations, of correcting for these effects. This is the case for instruments such as the Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) and the Gemini North Telescope (Gemini) Altitude-Conjugate Adaptive Optics for the Infrared (Altair) systems. The alternative is to rise above the limitations of the atmosphere entirely and put the telescope in space, for example, the Hubble Space Telescope (HST) and its successor, the Next-Generation Space Telescope (NGST). I discuss several techniques that help overcome the limitations of AO observations with existing instruments in order to make them more comparable to imaging from space. For example, effective dithering and flat-fielding techniques as well as methods to determine the effect of the instrument on the image of, say, a galaxy. The implementation of these techniques as a software package called AOTOOLS is discussed. I also discuss computer simulations of AO systems, notably the Gemini Altair instrument, in order to understand and improve them. I apply my AO image processing techniques to observations of high-redshift radio galaxies (HzRGS) with the CFHT AOB and report on deep imaging in near-infrared (NIR) bands of 6 HzRGs in the redshift range 1.1 ≤ z ≤ 3.8. The NIR is probing the restframe visible light—mature stellar populations—at these redshifts. The radio galaxy is resolved in all of these observations and its ‘clumpier’ appearance at higher redshift leads to the main result—although the sample is very small—that these galaxy environments are undergoing mergers at high redshift. Finally, I look to the future of high resolution observations and discuss simulations of imaging and spectroscopy with the NGST. The computer software NGST VI/MOS is a ‘virtual reality’ simulator of the NGST observatory providing the user with the opportunity to test real observing campaigns. / Graduate
103

Advanced radio interferometric simulation and data reduction techniques

Makhathini, Sphesihle January 2018 (has links)
This work shows how legacy and novel radio Interferometry software packages and algorithms can be combined to produce high-quality reductions from modern telescopes, as well as end-to-end simulations for upcoming instruments such as the Square Kilometre Array (SKA) and its pathfinders. We first use a MeqTrees based simulations framework to quantify how artefacts due to direction-dependent effects accumulate with time, and the consequences of this accumulation when observing the same field multiple times in order to reach the survey depth. Our simulations suggest that a survey like LADUMA (Looking at the Distant Universe with MeerKAT Array), which aims to achieve its survey depth of 16 µJy/beam in a 72 kHz at 1.42 GHz by observing the same field for 1000 hours, will be able to reach its target depth in the presence of these artefacts. We also present stimela, a system agnostic scripting framework for simulating, processing and imaging radio interferometric data. This framework is then used to write an end-to-end simulation pipeline in order to quantify the resolution and sensitivity of the SKA1-MID telescope (the first phase of the SKA mid-frequency telescope) as a function of frequency, as well as the scale-dependent sensitivity of the telescope. Finally, a stimela-based reduction pipeline is used to process data of the field around the source 3C147, taken by the Karl G. Jansky Very Large Array (VLA). The reconstructed image from this reduction has a typical 1a noise level of 2.87 µJy/beam, and consequently a dynamic range of 8x106:1, given the 22.58 Jy/beam flux Density of the source 3C147.
104

Advancing Blazar Science with Very-High-Energy Gamma-Ray Telescopes

Brill, Aryeh Louis January 2021 (has links)
Blazars, active galactic nuclei with relativistic jets pointed almost directly at Earth, are powerful and highly variable sources of nonthermal electromagnetic radiation, including very-high-energy gamma rays. We can detect these gamma rays with arrays of imaging atmospheric Cherenkov telescopes (IACTs), including the Very Energetic Radiation Imaging Telescope Array System (VERITAS) and the upcoming Cherenkov Telescope Array (CTA). After reviewing the science of blazars and the methods used by IACTs, we investigate how gamma-ray variability can provide insight into blazars' physical properties while also complicating efforts to understand these sources as a population. We first present a study of three flaring blazars observed with VERITAS and analyze these sources' spectral and variability characteristics, taking into account data at other wavebands, including that of the Large Area Telescope aboard the Fermi space telescope (Fermi-LAT). Next, after laying out how observing biases and intrinsic variability can confound blazar population studies with IACTs, we propose methods to account for these effects, and use simulated data to report expectations for a blazar luminosity function measurement with VERITAS. Sophisticated new instruments and data analysis methods can further expand the frontier of gamma-ray blazar science. To that end, we design a camera software system to enable safer and more efficient operations of a next-generation IACT being developed for CTA, the prototype Schwarzschild-Couder Telescope (pSCT). Finally, we develop methods to apply deep neural networks to the analysis of IACT data and employ these methods to reject background events detected by simulated arrays of IACTs.
105

An Arcminute-Resolution Imaging Study of the H-alpha & [S II] Emission of the ISM from the Local Perseus Arm Using the Virginia Tech Spectral-Line Survey

Nelson, Keith Phillip 09 September 2011 (has links)
The Virginia Tech Spectral-Line Survey (VTSS) is a series of 10-degree wide, arcminute-resolution images of the warm ionized interstellar medium (WIM) within the Milky Way for declinations greater than -15 degrees. The Wisconsin Hydrogen-Alpha Mapper (WHAM) studies the kinematics and distribution of this same material on an angular scale of one degree. Comparing the spatially-resolved images of the VTSS with WHAM's high spectral resolution images shows that the ISM's characteristics appear to be very similar at both degree and arcminute scales --- we see similar structures, and notice the same [S II]/H-alpha trend between those structures at both degree and arcminute scales. VTSS fields show three basic types of structures --- compact clouds with diameters greater than several degrees, those that are 1-degree or less in diameter, and extended filaments that differ from the clouds by spanning several degrees in length but having thicknesses of only a few tens of arcminutes. The latter two morphological types cannot be observed by WHAM. Additionally, VTSS data confirms that the [S II] intensity values are directly proportional to H-alpha intensities, a result that is also observed at degree resolutions. Finally, VTSS data show that [S II]/H-alpha ratios are, on average, nearly six times higher in the filaments. This would indicate that collisional excitation of singly-ionized sulfur ions is the dominant emission source within filaments. In clouds, the lower [S II]/H-alpha values observed are evidence that the H-alpha recombination line of photo-excited neutral hydrogen dominates. Because automating the VTSS was a key part of obtaining many of the images used in this project, I begin with a discussion of general observatory automation. I then address the specific processes and techniques used in automating the VTSS before discussing data collection and reduction techniques. / Ph. D.
106

Measuring the RFI environment of the South African SKA site

Manners, Paul John January 2007 (has links)
The Square Kilometre Array (SKA) Project is an international effort to build the world’s largest radio telescope. It will be 100 times more sensitive than any other radio telescope currently in existence and will consist of thousands of dishes placed at baselines up to 3000 km. In addition to its increased sensitivity it will operate over a very wide frequency range (current specification is 100 MHz - 22 GHz) and will use frequency bands not primarily allocated to radio astronomy. Because of this the telescope needs to be located at a site with low levels of radio frequency interference (RFI). This implies a site that is remote and away from human activity. In bidding to host the SKA, South Africa was required to conduct an RFI survey at its proposed site for a period of 12 months. Apart from this core site, where more than half the SKA dishes may potentially be deployed, the measurement of remote sites in Southern Africa was also required. To conduct measurements at these sites, three mobile measurement systems were designed and built by the South African SKA Project. The design considerations, implementation and RFI measurements recorded during this campaign will be the focus for this dissertation.
107

Lightning protection and radio frequency interference mitigation for the Karoo Array Telescope

Wiid, P. Gideon 03 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: South Africa and Australia are now the two remaining countries bidding for the Square Kilometre Array (SKA), the biggest and most sensitive project ever undertaken in radio astronomy. The South African SKA is demonstrating its technology capabilities through the Karoo Array Telescope (KAT or MeerKAT). The development of KAT is taking place in stages to optimise design and minimise risks at each stage. An array of seven 12 m antennas will be complete by the end of 2009, called KAT-7. The following phase will see the construction of MeerKAT, which will lead to eighty arrayed dishes. Lightning and RFI studies for KAT-7 are the focus of this dissertation. Due to the extent and complexity of the South African demonstrator project, these studies have largely been conducted on a single structure. Parameters for the dish antenna and pedestal design changed throughout their development. To be effective, the doctoral research had to track these changes appropriately. A Method of Moments frequency domain computational electromagnetic code, FEKO, is used throughout the study. The consequences of direct and indirect lightning strikes are examined for the KAT-7 structure. Important FEKO model verification is achieved through measurement of physical scale models in an anechoic chamber. The microwave simulation code, CST, gives direct comparison of FEKO results by using a finite volume time domain method of calculation. Using frequency domain analysis on these models, the lightning down conductor design over the dish antenna bearings is optimised with cost-effectiveness as one driving parameter. RFI coupling levels for different designs are compared to each other to identify areas requiring RFI mitigation. Analysis of resonances enables evaluation of the mitigation at frequencies sensitive to radio astronomy. A Sommerfeld integral ground plane is used together with the computational model to investigate the use of the concrete foundation steel reinforcing as part of the lightning earthing electrode system. Different interconnections of the steel reinforcing elements are critically evaluated. The KAT-7 design incorporated clear lightning protection and RFI mitigation policies derived from recommendations contained within this dissertation. / AFRIKAANSE OPSOMMING: Suid-Afrika en Australie is nou die oorblywende twee lande wat bie vir die Vierkante Kilometer Reeks (SKA), die grootste en mees sensitiewe projek nog ooit in radio astronomie onderneem. Die Suid Afrikaanse SKA demonstreer sy tegnologiese bekwaamheid met die Karoo Reeks Teleskoop (KAT of MeerKAT). Die ontwikkeling van KAT vind plaas in fases om die ontwerp te optimaliseer en risikos te minimaliseer met elke fase. ’n Reeks van sewe 12 m antennas, genaamd KAT-7, sal teen die einde van 2009 klaar wees. Die volgende fase behels die konstruksie van MeerKAT, wat sal lei tot ’n tagtig-skottel reeks. Die fokus van hierdie proefskrif hanteer weerlig en radiofrekwensie steurings (RFS) vir KAT-7. As gevolg van die omvang en kompleksiteit van die Suid-Afrikaanse demonstreerder projek, is die studies hoofsaaklik op een struktuur gedoen. Parameters vir die antenna-skottel en -voetstuk ontwerp het met hul ontwikkeling deurgaans verander. Om effektief te wees, moes die doktorale navorsing hierdie veranderinge toepaslik volg. ’n Metode-van-Momente frekwensiedomein rekenaar elektromagnetiese kode, FEKO, is deurgaans met die studie gebruik. Die gevolge van direkte en indirekte weerligslae vir die KAT-7 struktuur is ondersoek. Belangrike FEKO model bevestiging is bereik met metings van skaalmodelle in ’n anego¨ıse kamer. Die mikrogolf-simulasie kode, CST, gee ’n direkte vergelyking met die FEKO resultate deur ’n eindige-volume-tyd-domein metode van berekening te gebruik. Met behulp van frekwensiedomein analise van hierdie modelle, is die weerligafleierontwerp oor die antenna-skottel laers ge-optimaliseer, met koste-effektiwiteit as een van die drywingsparameters. RFS koppelingsvlakke vir onderskeie ontwerpe is teen mekaar opgeweeg om areas te identifiseer wat RFS tempering benodig. Analise van resonansies stel die evaluering van die tempering in staat teen frekwensies wat sensitief is vir radio astronomie. ’n Sommerfeld integrale grondvlak word saam met die rekenaarmodel gebruik om die insluiting van die beton se staalversterking as deel van die aardingselektrodestelsel te ondersoek. Verskillende bindmetodes van die onderlinge staalversterkingselemente word krities ge¨evalueer. Die KAT-7 ontwerp inkorporeer duidelike weerligbeveiligings- en RFS temperingstrategie ¨e, komende van aanbevelings in hierdie proefskrif omskryf
108

Extremely large segmented mirrors: dynamics, control and scale effects

Bastaits, Renaud 11 June 2010 (has links)
All future Extremely Large Telescopes (ELTs) will be segmented. However, as their size grows, they become increasingly sensitive to external disturbances, such as gravity, wind and temperature gradients and to internal vibration sources. Maintaining their optical quality will rely more and more on active control means. This thesis studies active optics of segmented primary mirrors, which aims at stabilizing the shape and ensuring the continuity of the surface formed by the segments in the face of external disturbances.<p><p>The modelling and the control strategy for active optics of segmented mirrors are examined. The model has a moderate size due to the separation of the quasi-static behavior of the mirror (primary response) from the dynamic response (secondary, or residual response). The control strategy considers explicitly the primary response of the telescope through a singular value controller. The control-structure interaction is addressed with the general robustness theory of multivariable feedback systems, where the secondary response is considered as uncertainty.<p><p>Scaling laws allowing the extrapolation of the results obtained with existing 10m telescopes to future ELTs and even future larger telescopes are addressed and the most relevant parameters are highlighted. The study is illustrated with a set of examples of increasing sizes, up to 200 segments. This numerical study confirms that scaling laws, originally developed with simple analytical models, can be used in confidence in the preliminary design of large segmented telescopes. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
109

Keck Planet Imager and Characterizer: concept and phased implementation

Mawet, D., Wizinowich, P., Dekany, R., Chun, M., Hall, D., Cetre, S., Guyon, O., Wallace, J. K., Bowler, B., Liu, M., Ruane, G., Serabyn, E., Bartos, R., Wang, J., Vasisht, G., Fitzgerald, M., Skemer, A., Ireland, M., Fucik, J., Fortney, J., Crossfield, I., Hu, R., Benneke, B. 26 July 2016 (has links)
The Keck Planet Imager and Characterizer (KPIC) is a cost-effective upgrade path to the W.M. Keck observatory (WMKO) adaptive optics (AO) system, building on the lessons learned from first and second-generation extreme AO (ExA0) coronagraphs. KPIC will explore new scientific niches in exoplanet science, while maturing critical technologies and systems for future ground-based (TMT, FELT, GMT) and space-based planet imagers (HabEx, LUVOIR). The advent of fast low-noise IR cameras (IR-APD, MKIDS, electron injectors), the rapid maturing of efficient wavefront sensing (WFS) techniques (Pyramid, Zernike), small inner working angle (IWA) coronagraphs (e.g., vortex) and associated low-order wavefront sensors (LOWFS), as well as recent breakthroughs in high contrast high resolution spectroscopy, open new direct exoplanet exploration avenues that are complementary to planet imagers such as VLT-SPHERE and the Gemini Planet Imager (GPI). For instance, the search and detailed characterization of planetary systems on solar-system scales around late-type stars, mostly beyond SPHERE and GPI's reaches, can be initiated now at WMKO.
110

Optimisation des analyseurs de front d'onde à filtrage optique de Fourier / Optimization of Fourier based wavefont sensors

Fauvarque, Olivier 11 September 2017 (has links)
L'Europe prépare actuellement le plus grand télescope du monde : l'European Extremely Large Telescope (E-ELT). Prévu vers 2026, ce télescope géant permettra de répondre à des questions fondamentales de l'astrophysique contemporaine. L'imagerie d'objets astrophysiques depuis des télescopes au sol est cependant perturbée par l'atmosphère qui réduit la capacité des instruments au sol à distinguer les objets proches. L'Optique Adaptative (OA) permet de restaurer cette résolution angulaire en corrigeant en temps réel (via un miroir déformable) le front d'onde perturbé par l'atmosphère (mesuré par l'Analyseur de Surface d'Onde (ASO)). Jusqu'à récemment, la majorité des systèmes d'OA utilisaient des ASO Shack-Hartmann (SH). Des concepts concurrents basés sur le filtrage optique de Fourier (le senseur Pyramide ou l'analyseur Zernike) viennent cependant d'être mis en fonctionnement et leurs résultats semblent surpasser les performances du SH. En vue de leur potentielle utilisation sur les ELTs, cette thèse vise à consolider leur compréhension théorique ainsi qu'à optimiser ces ASO basés sur le filtrage de Fourier. Cette thèse développe un cadre mathématique qui décrit sous un unique formalisme ces ASO. Il permet de généraliser les designs préexistants -passant ainsi d'ASO uniques à des "classes d'ASO"- en transformant leurs grandeurs caractéristiques à l'origine fixées en degrés de liberté. Les classes Pyramide et Zernike sont donc explorées dans le but d'optimiser ces ASO au regard des attentes expérimentales. Des configurations inédites de la classe Pyramide -ASO que l'on appelle Pyramides aplaties- s'avèrent notamment prometteuses et font l'objet d'une étude plus poussée. / Europe is currently preparing the largest telescope of the world: the European Extremely Large Telescope (E-ELT). Planned by 2026, this huge telescope will allow to answer fundamental questions of contemporary astrophysics. However, images of astrophysical objects done by ground based telescopes suffer from the atmospheric turbulence which reduces the capacity of instruments to distinguish objects too close to each other. The Adaptive Optics (AO) allows to restore this loss of angular resolution by correcting (thanks to a deformable mirror) in real time the perturbed wave front (measured by the WaveFront Sensor (WFS)).Until very recently, the majority of AO systems had used the Shack-Hartmann (SH) WFS. New concepts based on Fourier filtering (the Pyramid or the Zernike WFSs) have however just been put in operation in several professional observatories and their results seem to outperform the SH. Since they would potentially be chosen for the AO systems of the future ELTs, this thesis aims to consolidate their theoretical understanding and to optimize these Fourier based WFSs.We firstly develop a mathematical framework which describes all these WFSs under an unique formalism. It allows to generalize the pre-existent designs -a WFS thus becomes a "WFS class"- by considering their optical parameters as flexible quantities. We then explored the two Pyramid and Zernike classes to identify the influence of class' parameters on performance criteria in order to optimize optical designs with regard to the instrumental requirements. New configurations of the Pyramid class -that we called Flattened pyramids- show promising behaviors and are studied in details.

Page generated in 0.0386 seconds