881 |
High Temperature Deformation Behaviour of an Al-Mg-Si-Cu Alloy and Its Relation to the Microstructural CharacteristicsCarrick, Roger Nicol January 2009 (has links)
The microstructural evolution and mechanical properties at elevated temperatures of a recently fabricated fine-grained AA6xxx aluminium sheet were evaluated and compared to the commercially fabricated sheet of the same alloy in the T4P condition. The behaviour of the fine-grained and T4P sheets was compared at elevated temperatures between 350°C and 550°C, as well as room temperature. Static exposure to elevated temperatures revealed that the precipitate structure of the fine-grained material did not change extensively. The T4P material, however, underwent extensive growth of precipitates, including a large amount of grain boundary precipitation. At room temperature, the T4P material deformed at much higher stresses than the FG material, but achieved lower elongations. Deformation at elevated temperatures revealed that the fine-grained material achieved significantly larger elongations to failure than the T4P material in the temperature range of 350°C-450°C. Both materials behaved similarly at 500°C and 550°C. Above 500°C, the grain size was greatly reduced in the T4P material, and only a slightly increased in the fine-grained material. At temperatures above 450°C, the elongation to failure in both materials generally increased with increasing strain-rate. The poor performance of the T4P material at low temperatures was attributed to the precipitate characteristics of the sheet, which lead to elevated stresses and increased cavitation. The deformation mechanism of both materials was found to be controlled by dislocation climb, accommodated by the self diffusion of aluminium at 500°C and 550°C. The deformation mechanism in the fine-grained material transitioned to power law breakdown at lower temperatures. At 350°C to 450°C, the T4P material behaved similarly to a particle hardened material with an internal stress created by the precipitates. The reduction in grain size of the T4P material after deformation at 500°C and 550°C was suggested to be caused by dynamic recovery/recrystallization. The role of a finer grain-size in the deformation behaviour at elevated temperatures was mainly related to enhanced diffusion through grain boundaries. The differences in the behaviour of the two materials were mainly attributed to the difference in the precipitation characteristics of the materials.
|
882 |
Ion temperature measurements in STOR-M boundary plasmas using a retarding field energy analyzerRohraff, Damian 10 September 2009 (has links)
The Retarding Field Energy Analyzer (RFEA, RFA) is a simple and reliable diagnostic technique to measure the ion temperature in the Scrape-Off Layer (SOL) and edge of magnetic fusion devices. Design and operation features of a single-sided
(facing the ion down stream side) RFEA for ion temperature measurements in the STOR-M tokamak are described. Its compact size (21 × 15 × 20 mm3 ) allows RFEA measurements without perturbing plasma significantly. Both ion and electron tem-
perature have been measured by RFEA in the STOR-M tokamak. A method is proposed to correct the effects of ion flow on the ion temperature using the simultaneously measured Mach number. The measured electron temperature is consistent
with the previously reported Langmuir probe data. Abnormal behavior of the RFEA has been observed in both ion and electron modes when RFEA is inserted deep into the plasma.
|
883 |
The characteristics of Neural stem cell cultured from the tilapia, Oreochromis mossambicus.Yang, Chu-hsien 01 September 2011 (has links)
The structure and function of brain shows sexual dimorphism in the vertebrates. Sexual differentiation is divided into brain sexual differentiation and gonad sexual differentiation. Brain sexual differentiation is resulted from the neural development. In the present study, the neurosphere cloned from tilapia, Oreochromis mossambicus, was used. The characteristics of neurosphere derived from both primary- and sub- culture, were studied. The effects of epidermal growth factor (EGF), basic fibroblast growth factor (bFGF, FGF2), and temperature on the neurosphere cloned from both primary culture and subculture, were investigated. These results show that the neurospheres, cloned form both primary- and sub- culture, is consist of the nestin-immunoreactive cell. Furthermore, the cell of the neurosphere shows an ability of differentiation. And the diameter of neurosphere in the subculture is significantly larger than that of primary culture. On the other hand, both FGF and temperature have an effect to increase the diameter of neurosphere in the primary culture.
|
884 |
Microscopic study of low temperature adsorbed propanal on gold(110) surfaceWang, Yu-Yi 06 August 2012 (has links)
The catalytic properties of gold have been widely investigated. In Dr. Chao-Ming Chiang¡¦s study, department of chemistry of NSYSU, they found that the organic molecules, propanal, form heterocyclic 2, 4, 6- triethyl-1, 3, 5-trioxane ring on Au(110) missing row surface at 180 K by temperature programmed desorption (TPD) and reflection absorption infrared spectra (RAIR). In this study, we used low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to study the detailed catalytic process on surface. Residual gas analyzer (RGA) was used to measure the thermal desorption of the propanal on Au(110) at 130 K and 185 K. This can be used to calibrate the temperature on the surface, which can not be directly measured by the thermal couple on the manipulator. The combination between the LEED pattern from the experiment and the DFT model shows the propanal adsorbed on the inclined plane with about 64 deg. to 71 deg. companing the (110) plane. The STM results also show that some of the surface after adsorption have trench wider atomic rows. In our experiment, the real temperature of the sample was not exactly determined. More experiments need to be taken to confirm the temperature.
|
885 |
Studies of the Effect and Strategies on the Stability of a Air-breathing PEMFCChang, Yu-Sheng 28 August 2012 (has links)
The improvement of performance and the maintenance of stability of a portable air-breathing PEMFC are studied in this thesis. The water content within proton exchange membrane affects strongly on the performance and stability of a PEMFC stack, in which water within membrane can form a conduction channel to provide hydrogen ion transferring from anode to cathode. The over-dried condition caused by a long time operation can also be avoided to prevent the membrane from damaging. Thus the proper humidification of a stack is important for a portable air-breathing PEMFC system.
The traditional humidifier is too bulky to be suitable for portable fuel cells. A simple humidification system developed in this research is making use of the water stored in the stack bottom and the self-generating heat by chemical reaction to drive the passive humidification system of this stack. The water at the bottom of the tank can be sucked with cotton threads in cathode and a piece of cotton cloth by capillary phenomenon and transfer to the membrane of MEA. The cotton threads humidification in cathode is enough in low and middle current density in this study. It is not enough in high current density due to the large water vapor dissipation in the cathode surface, so a cotton cloth in anode is added to increase the evaporating surface to supply water to membrane. This passive humidification system does not need extra energy, and it only employs the heat generated by the cells. The system follows the simple principle, which is always obeyed in a portable fuel cell system.
A 16-cell HFC stack developed in this research adopts carbon fibers as current collectors. Two pieces of 8-cell anodes is placed in the inner sides of the stack, and the 8-cell cathode is located on external sides, which is exposed directly to the ambient air. The 16-cell can connect in series or parallel. The experimental results show that it is helpful to add cotton threads in cathode and cotton cloth in anode to improve the stability of the 16-cell stack during a the long period operation. The 16-cell HFC stack has succeeded in the operation and charging for an IPhone, digital photo frame, and LED light. The experiments have proved that this type of the lightweight humidification system is helpful in the future portable hydrogen fuel cell applications.
|
886 |
PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTSTan, Xuehao 16 January 2010 (has links)
To increase the successful rate of acid stimulation, a method is required to
diagnose the effectiveness of stimulation which will help us to improve stimulation
design and decide whether future action, such as diversion, is needed.
For this purpose, it is important to know how much acid enters each layer in a
multilayer carbonate formation and if the low-permeability layer is treated well.
This work develops a numerical model to determine the temperature behavior for
both injection and flow-back situations. An important phenomenon in this process is the
heat generated by reaction, affecting the temperature behavior significantly. The result of
the thermal model showed significant temperature effects caused by reaction, providing
a mechanism to quantitatively determine the acid flow profile. Based on this mechanism,
a further inverse model can be developed to determine the acid distribution in each layer.
|
887 |
Field application of an interpretation method of downhole temperature and pressure data for detecting water entry in horizontal/highly inclined gas wellsAchinivu, Ochi I. 15 May 2009 (has links)
In the oil and gas industry today, continuous wellbore data can be obtained with high
precision. This accurate and reliable downhole data acquisition is made possible by
advancements in permanent monitoring systems such as downhole pressure and
temperature gauges and fiber optic sensors. The monitoring instruments are increasingly
incorporated as part of the intelligent completion in oil wells where they provide
bottomhole temperature, pressure and sometimes volumetric flow rate along the
wellbore - offering the promise of revolutionary changes in the way these wells are
operated. However, to fully realize the value of these intelligent completions, there is a
need for a systematic data analysis process to interpret accurately and efficiently the raw
data being acquired. This process will improve our understanding of the reservoir and
production conditions and enable us make decisions for well control and well
performance optimization.
In this study, we evaluated the practical application of an interpretation model,
developed in a previous research work, to field data. To achieve the objectives, we developed a simple and detailed analysis procedure and built Excel user interface for
data entry, data update and data output, including diagnostic charts and graphs. By
applying our interpretation procedure to the acquired field data we predicted temperature
and pressure along the wellbore. Based on the predicted data, we used an inversion
method to infer the flow profile - demonstrating how the monitored raw downhole
temperature and pressure can be converted into useful knowledge of the phase flow
profiles and fluid entry along the wellbore. Finally, we illustrated the sensitivity of
reservoir parameters on accuracy of interpretation, and generated practical guidelines on
how to initialize the inverse process. Field production logging data were used for
validation and application purposes.
From the analysis, we obtained the production profile along the wellbore; the fluid
entry location i.e. the productive and non-productive locations along the wellbore; and
identified the fluid type i.e. gas or water being produced along the wellbore. These
results show that temperature and pressure profiles could provide sufficient information
for fluid identity and inflow distribution in gas wells.
|
888 |
Thermal study of vulnerable atherosclerotic plaqueKim, Taehong 15 May 2009 (has links)
Atherosclerotic plaques with high probability of rupture show the presence of
a hot spot due to the accumulation of inflammatory cells. This study utilizes two
and three dimensional (2-D and 3-D) arterial geometries containing an atherosclerotic
plaque experiencing different levels of inflammation and uses models of heat transfer
analysis to determine the temperature distribution in the plaque region.
The 2-D studies consider three different vessel geometries: a stenotic straight
artery, a bending artery and an arterial bifurcation which model a human aorta, a
coronary artery and a carotid bifurcation, respectively. The 3-D model considers
a stenotic straight artery using realistic and simplified geometries. Three different
blood flow cases are considered: steady-state, transient state and blood flow reduction.
In the 3-D model, thermal stress produced by local inflammation is estimated
to determine the effect of inflammation over plaque stability. For fluid flow and
heat transfer analysis, Navier-Stokes equations and energy equation are solved; for
structural analysis, the governing equations are expressed in terms of equilibrium
equation, constitutive equation, and compatibility condition, which are are solved
using the multi-physics software COMSOL 3.3 (COMSOL, Inc.).
Our results indicate that the best location to measure plaque temperature in
the presence of blood flow is recommended between the middle and the far edge of
the plaque. The blood flow reduction leads to a non-uniform temperature increase
ranged from 0.1 to 0.25 oC in the plaque/lumen interface. In 3-D realistic model, the multiple measuring points must be considered to decrease the potential error in
temperature measurement even within 1 or 2 mm at centerline region of plaque. The
most highly thermal stressed regions with the value of 1.45 Pa are observed at the
corners of lipid core and the plaque/lumen interface.
The mathematical model developed provides a tool to analyze the factors affecting
heat transfer at the plaque surface. The results may contribute to the understanding
of the relationship between plaque temperature and the likelihood of rupture,
and also provide a tool to better understand arterial wall temperature measurements
obtained with novel catheters.
|
889 |
Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluidsIbeh, Chijioke Stanley 15 May 2009 (has links)
Designing a fit-for-purpose drilling fluid for high-pressure, high-temperature (HP/HT)
operations is one of the greatest technological challenges facing the oil and gas industry
today. Typically, a drilling fluid is subjected to increasing temperature and pressure with
depth. While higher temperature decreases the drilling fluid’s viscosity due to thermal
expansion, increased pressure increases its viscosity by compression. Under these
extreme conditions, well control issues become more complicated and can easily be
masked by methane and hydrogen sulfide solubility in oil-base fluids frequently used in
HP/HT operations. Also current logging tools are at best not reliable since the
anticipated bottom-hole temperature is often well above their operating limit. The
Literature shows limited experimental data on drilling fluid properties beyond 350°F and
20,000 psig. The practice of extrapolation of fluid properties at some moderate level to
extreme-HP/HT (XHP/HT) conditions is obsolete and could result in significant
inaccuracies in hydraulics models.
This research is focused on developing a methodology for testing drilling fluids at
XHP/HT conditions using an automated viscometer. This state-of-the-art viscometer is
capable of accurately measuring drilling fluids properties up to 600°F and 40,000 psig. A
series of factorial experiments were performed on typical XHP/HT oil-based drilling
fluids to investigate their change in rheology at these extreme conditions (200 to 600°F and 15,000 to 40,000 psig). Detailed statistical analyses involving: analysis of variance,
hypothesis testing, evaluation of residuals and multiple linear regression are
implemented using data from the laboratory experiments.
I have developed the FluidStats program as an effective statistical tool for characterizing
drilling fluids at XHP/HT conditions using factorial experiments. Results from the
experiments show that different drilling fluids disintegrate at different temperatures
depending on their composition (i.e. weighting agent, additives, oil/water ratio etc). The
combined pressure-temperature effect on viscosity is complex. At high thresholds, the
temperature effect is observed to be more dominant while the pressure effect is more
pronounced at low temperatures.
This research is vital because statistics show that well control incident rates for non-
HP/HT wells range between 4% to 5% whereas for HP/HT wells, it is as high as 100%
to 200%. It is pertinent to note that over 50% of the world’s proven oil and gas reserves
lie below 14,000 ft subsea according to the Minerals Management Service (MMS). Thus
drilling in HP/HT environment is fast becoming a common place especially in the Gulf
of Mexico (GOM) where HP/HT resistant drilling fluids are increasingly being used to
ensure safe and successful operations.
|
890 |
Real-Time Evaluation of Stimulation and Diversion in Horizontal WellsTabatabaei Bafruei, Seyed Mohammad 2011 December 1900 (has links)
Optimum fluid placement is crucial for successful acid stimulation treatments of long horizontal wells where there is a broad variation of reservoir properties along the wellbore. Various methods have been developed and applied in the field to determine acid placement and the effectiveness of diversion process, but determining the injection profile during a course of matrix acidizing still remains as a challenge. Recently distributed temperature sensing technology (DTS) has enabled us to observe dynamic temperature profiles along a horizontal wellbore during acid treatments. Quantitative interpretation of dynamic temperature data can provide us with an invaluable tool to assess the effectiveness of the treatment as well as optimize the treatment through on-the-fly modification of the treatment parameters such as volume, injection rate and diversion method.
In this study we first discuss how fluid placement can be quantified using dynamic temperature data. A mathematical model has been developed to simulate the temperature behavior along horizontal wellbores during and shortly after acid treatments. This model couples a wellbore and a near-wellbore thermal model considering the effect of both mass and heat transfer between the wellbore and the formation. The model accounts for all significant thermal processes involved during a treatment, including heat of reaction, conduction, convection. Then a fast and reliable inversion procedure is used to interpret the acid distribution profiles from the measured temperature profiles.
We extend the real-time monitoring and evaluation of the acid stimulation treatment in horizontal wells to calculate the evolving skin factor as a function of time and location along the wellbore. As the skin factor is a reflection of the injectivity, it will indicate directly if the acid stimulation is effective and if diversion is successful. The approach to monitor the evolving skin along the lateral is to use a proper pressure transient model to calculate skin factor by integrating the inversion results of the temperature data (acid injection profile) with either surface or bottomhole injection pressure. This method can help engineers to optimize an acid stimulation in the field.
|
Page generated in 0.0307 seconds