• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 411
  • 77
  • 56
  • 33
  • 29
  • 27
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • Tagged with
  • 1028
  • 545
  • 305
  • 212
  • 205
  • 190
  • 162
  • 146
  • 145
  • 144
  • 138
  • 89
  • 85
  • 78
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Optical analysis of the ERBE scanning thermistor bolometer radiometer using the Monte Carlo method

Meekins, Jeffrey L. 07 April 2009 (has links)
In 1984, the Earth Radiation Budget Experiment (ERBE) was started by the National Aeronautics and Space Administration (NASA) to provide data to the meteorological community to predict long-term weather and climate trends. Three satellites employing nonscanning active cavity and scanning thermistor bolometer radiometers are orbiting the Earth to monitor its radiative emission. A numerical model has been formulated to better understand the performance of the ERBE scanning radiometer and to aid future radiometric design and calibration procedures. The Monte Carlo method is applied to the ERBE scanning radiometer to spectrally characterize its optical and radiative performance. The optical analysis reveals that the ERBE scanning radiometer design successfully limits the amount of energy that reaches the active sensor to the designated instrument field of view. Distribution factors between the diffuse-specular surfaces of the scanning radiometer are calculated using the Monte Carlo method and are then used to perform the radiative analysis. This analysis shows that less than three percent of the radiation emitted from the passive surfaces of the radiometer reaches the active sensor, an acceptable level for radiometric instrumentation used in space. / Master of Science
232

Influence of Structural Disturbance on Stream Function and Macroinvertebrate Communities in Upper Coastal Plain Headwater Streams

Biemiller, Richard Andrew 01 January 2016 (has links)
Freshwater is a resource under threat due to anthropogenic actions. Stream restoration is a common method for mitigating disturbance. Inconsistent methodologies used for evaluating restorations have drawn criticism. Limited use of baseline data for guiding stream restoration activities is of particular concern. This study was developed to elucidate metrics that differentiate reference and disturbed sites in Upper Coastal Plain streams. This information could improve resource use and successes of restorations. Structural and functional variables were examined in 10 reference and 10 streams that meet the traditional definition of disturbance and would be restoration priorities. Disturbed streams were classified into two regimes, temporal, based on time since disturbance, and categorical, based on disturbance cause. Some metrics of geomorphology, water chemistry and macroinvertebrates differentiated reference from disturbed regimes and while other metrics separated streams within disturbance regimes. Surprisingly, leaf decay rate was not an effective metric for determining disturbance. However, macroinvertebrate leaf pack colonizers were found to be useful for differentiating reference sites and disturbance regimes. Of the 10 disturbed streams this study examined, my data suggests that only three are in immediate need of restoration. This study emphasizes the importance of baseline data and its potential benefits for guiding stream restoration.
233

Cryogenic soil processes in a changing climate / Kryogena mark processer i ett föränderligt klimat

Becher, Marina January 2016 (has links)
A considerable part of the global pool of terrestrial carbon is stored in high latitude soils. In these soils, repeated cycles of freezing and thawing creates soil motion (cryoturbation) that in combination with other cryogenic disturbance processes may play a profound role in controlling the carbon balance of the arctic soil. Conditions for cryogenic soil processes are predicted to dramatically change in response to the ongoing climate warming, but little is known how these changes may affect the ability of arctic soils to accumulate carbon. In this thesis, I utilize a patterned ground system, referred to as non-sorted circles, as experimental units and quantify how cryogenic soil processes affect plant communities and carbon fluxes in arctic soils. I show that the cryoturbation has been an important mechanism for transporting carbon downwards in the studied soil over the last millennia. Interestingly, burial of organic material by cryoturbation appears to have mainly occurred during bioclimatic events occurring around A.D. 900-1250 and A.D. 1650-1950 as indicated by inferred 14C ages. Using a novel photogrammetric approach, I estimate that about 0.2-0.8 % of the carbon pool is annually subjected to a net downward transport induced by the physical motion of soil. Even though this flux seems small, it suggests that cryoturbation is an important transporter of carbon over centennial and millennial timescales and contributes to translocate organic matter to deeper soil layers where respiration proceeds at slow rates. Cryogenic processes not only affect the trajectories of the soil carbon, but also generate plant community changes in both species composition and abundance, as indicated by a conducted plant survey on non-sorted circles subjected to variable differential frost heave during the winter. Here, disturbance-tolerant plant species, such as Carex capillaris and Tofieldia pusilla, seem to be favoured by disturbance generated by the differential heave. Comparison with findings from a previous plant survey on the site conducted in the 1980s suggest that the warmer temperatures during the last decades have resulted in decreased differential heave in the studied non-sorted circles. I argue that this change in cryogenic activity has increased abundance of plants present in the 1980s. The fact that the activity and function of the non-sorted circles in Abisko are undergoing changes is further supported by their contemporary carbon dioxide (CO2) fluxes. Here, my measurements of CO2 fluxes suggest that all studied non-sorted circles act as net CO2 sources and thus that the carbon balance of the soils are in a transition state. My results highlight the complex but important relationship between cryogenic soil processes and the carbon balance of arctic soils.
234

Variations in Stable Isotopic Composition of Gorgonian Corals in Southeastern Alaska

Parks, Devyn 01 January 2015 (has links)
Climate change, upwelling events, and local oceanographic events influence nutrient availability to primary producers in the ocean, which in turn affects the ratio of lighter to heavier isotopes, δ15N and δ13C, found in the primary producers of the ocean. When these primary producers die, they create sinking particulate organic matter (POMsink) which is taken up by the calcite and proteinaceous gorgonin rich coral Primnoa pacifica and integrated into their alternating concentric growth bands. Within this study, Primnoa pacifica from Glacier Bay Basin in Alaska is used as an environmental proxy to examine the δ15N and δ13C patterns and variations in the ocean and atmosphere over time. We examined the variations between each sample and compared the information to previously recorded data. δ15N and δ13C of four coral samples were compared using distance as a proxy for time. The approximate calculated ages of GB1 and GB2 were 28.2 and 40.6 years respectively. The δ13C results for this study were inconclusive because inorganic carbon from the calcite layer of the skeleton skewed the results. δ15N results showed much variation between samples.
235

ENVIRONMENTAL EFFECTS ON BEHAVIOR AND PHYSIOLOGY IN CRAYFISH

Bierbower, Sonya M. 01 January 2010 (has links)
Despite dramatic morphological differences between animals from different taxa, several important features in organization and sensory system processing are similar across animals. Because of this similarity, a number of different organisms including mammals, insects, and decapod crustaceans serve as valuable model systems for understanding general principles of environmental effects. This research examines intrinsic and extrinsic factors by behaviorally and physiologically means to identify the impact of environmental conditions on two distinct crayfish species- Procambarus clarkii (surface) and Orconectes australis packardi (cave). The research identified behavioral and physiological responses in these two morphological and genetically distinct species. The studies also examined multiple levels of complexity including social behavior, an autonomic response, chemosensory capabilities and neuronal communication, identified comparative similarities/differences, addressed learning and environmental influences on learning and examined behavioral and cellular responses to high levels of carbon dioxide. I found environmental factors directly influence crayfish behavior of social interactions. Interactions were more aggressive, more intense and more likely to end with a physical confrontation when they took place 'in water' than 'out of water'. The modified social interaction resulted in a altered fighting strategy. A study on motor task learning was undertaken which showed similar learning trends among these crayfish species despite their reliance on different sensory modalities. I also demonstrated learning was dependent on perceived stress by the organism. Previously trained crayfish inhibited from completing a task showed significant increase in an autonomic stress response. Studies on the behavioral and physiological responses to CO2 revealed that high [CO2] is a repellent in a concentration dependent manner. The autonomic responses in heart rate and an escape tailflip reflex shows complete cessation with high [CO2]. A mechanistic effect of CO2 is by blocking glutamate receptors at the neuromuscular junction and through inhibition of the motor nerve within the CNS.
236

The effects of stream productivity on aquatic-terrestrial linkages

Burdon, Francis John January 2004 (has links)
The potential relationship between riparian arachnids and aquatic insect productivity was assessed in forest streams throughout the central South Island of New Zealand. Initially, a survey was conducted of thirty seven, first-third order forest streams. Streams were selected to represent a range of benthic invertebrate standing crops (as a surrogate measure of "productivity") from Banks Peninsula streams with relatively high benthic invertebrate densities to acid mine drainage streams near Reefton that were almost devoid of aquatic life. At each site benthic invertebrate densities and biomass were measured in riffle habitats and adjacent gravel bars were sampled for terrestrial invertebrates. At a sub-set of 16 sites, a 20 metre longitudinal web-building spider survey was conducted along each bank of the stream. As an additional component, a 20 metre transect starting at the stream margin and running perpendicularly into the forest was used to survey the density of web-building spiders with increasing distance from the stream. Results from the survey of in-situ stream insect biomass and gravel bar invertebrates showed a strong relationship between aquatic insect biomass and the biomass of riparian arachnids (R2 = 0.42, P < 0.001) having accounted for potentially confounding factors such as stream size, elevation, substrate and disturbance. The 20 metre longitudinal survey showed that streams with the highest in-situ insect biomass had significantly higher densities of web-building spiders along their banks (R2 = 0.28, P < 0.05), having accounted for potential confounding variables of elevation, habitat architecture and stream and channel width. The stream to forest survey showed a strong exponential decay in web-building spider densities with increasing distance from the stream (R2 = 0.96, P < 0.0001). Regardless of stream productivity web-building spiders were most abundant at the stream margins and rapidly declined to very low densities 20 metres from the stream. In order to further test the relationship between riparian web-building spider densities and stream insect productivity, a stream fertilization experiment was conducted on six first-second order streams in the Maimai experimental catchment, Reefton. Three streams were enriched by the addition of a fertiliser solution mainly consisting of sodium nitrate for seven months, and the other three streams were used as controls. Water chemistry, benthic invertebrate communities, emerging aquatic adults, and the densities of web-building spiders along the stream corridor and in the forest were monitored in three seasons (spring, summer and autumn) over the course of the nutrient-addition. By the end of the experiment, conductivity was significantly higher in nutrient-addition streams than in the control streams (F = 80.5, P < 0.001), but chlorophyll concentrations showed no significant differences between treatments. Both benthic mayfly densities (F = 6.15, P < 0.05) and the biomass of adult aquatic dipterans (Chironomidae, Simuliidae) (F = 9.25, P < 0.01) were significantly higher in nutrient-addition streams in the last sampling round. Spiders recorded from intercept traps indicated that by the end of the experiment spider activity was significantly higher within 2.5 metres of the nutrient-addition streams (F = 5.70, P < 0.01). However, seasonal densities of web-building spiders along the stream margin and in the forest decreased with no significant differences observed between nutrient-addition and control streams. The results from these studies indicate that adult insects emerging from streams represent an important source of prey that could influence the biomass and abundance of riparian arachnids. Additionally, the results imply that stream productivity and size could mediate the strength of the interaction between riparian and stream habitats. Moreover, feedback mechanisms present in both systems could have implications for such interactions. The elevated densities of web-building spiders observed at the stream margin led to the proposal of the "Highway Robber" hypothesis. This hypothesis suggests that such higher densities of spiders are the result of increased insect activity along the stream corridor: the emergence of adult aquatic insects was predicted to vary less over temporal and spatial scales than that of terrestrial insects due to the poorly synchronized life histories in many New Zealand stream insects. I conclude by suggesting that there are numerous anthropocentric perturbations such as loss of heterogeneity, introduced species, pollution and habitat degradation that could undermine and decouple the intimate linkages between aquatic and terrestrial ecosystems.
237

The Affect of Low Tide on the Digestion of Balanus glandula, the Acorn Barnacle.

Osborn, Jesse 01 May 2013 (has links)
The rocky intertidal zone, experiencing fully marine and fully terrestrial conditions, has become increasingly investigated as a model ecosystem for studying the future implications of climate change. The barnacle, Balanus glandula, a common rocky intertidal inhabitant, plays an important role as a key prey item for many organisms. Low tide can be particularly challenging for barnacles as they are marine organisms subjected to the abiotic conditions of a terrestrial environment. The most stressful of these are increased temperature and decreased oxygen availability. This study aimed to investigate how low tide impacts the energy budget, specifically the digestion, of B. glandula. Barnacles are unable to feed at low tide however, if they were able to digest at low tide, they could maximize their energy intake by emptying their stomach to prepare to feed at the next high tide. However, digestion is a metabolically costly activity, which could make it less energetically favorable to digest when there’s less oxygen available. To test for an effect of low tide on digestion, barnacles were fed, and the time to first fecal production measured as a ‘baseline’. This was repeated, but barnacles were exposed to either a 16ºC or 35 ºC low tide immediately after being fed. The change in digestion time was calculated by comparing these two times for each barnacle. It was found that regardless of temperature, barnacles delayed their digestion by about 50-60 minutes after exposure to a one hour low tide. To determine the energetic cost of digestion, the rate of oxygen consumption was compared between starved and digesting barnacles. I was unable to detect any evidence of elevated metabolic activity during digestion. Additional testing is needed to confirm these results as the barnacles may have not fed during the trial, thus had no food to digest. While it appears that increasing temperatures associated with climate change will have little impact on the digestion of barnacles at low tide, if climate change alters the duration of low tide, there could be an energetic impact to barnacles due to the slowing of their metabolism as indicated by the delay in their digestion.
238

Integrating the effects of climate change and caribou herbivory on vegetation community structure in low Arctic tundra

Zamin, Tara 07 June 2013 (has links)
Arctic tundra vegetation communities are rapidly responding to climate warming with increases in aboveground biomass, particularly in deciduous shrubs. This increased shrub density has the potential to dramatically alter the functioning of tundra ecosystems through its effects on permafrost degradation and nutrient cycling, and to cause positive feedbacks to global climate change through its impacts on carbon balance and albedo. Experimental evidence indicates that tundra plant growth is most strongly limited by soil nutrient availability, which is projected to increase with warming. Therefore research to date into the mechanisms driving tundra 'shrub expansion' has taken a 'bottom-up' perspective, overlooking the potential role of herbivory in mediating plant-soil interactions. In this thesis, I integrate the impacts of climate warming and caribou browsing on tundra vegetation community structure, and specifically investigate if increases in soil fertility with warming might lead to changes in vegetation biomass and chemistry that could fundamentally alter herbivore-nutrient cycling feedbacks, shifting the role of caribou browsing from restricting shrub growth to facilitating it. Using experimental greenhouses, nutrient addition plots, and caribou exclosures at Daring Lake Research Station in the central Canadian low Arctic, I showed that warming increased soil nutrient availability and plant biomass, and that caribou browsing restricted tundra shrub growth under present conditions. Plant and soil nutrient pool responses to warming demonstrated that increased growing season temperatures enhanced tundra plant growth both by increasing soil nutrient availability and by inferred increases in the rate of photosynthesis, however that the former process was comparatively more limiting. Species- and plant part-specific changes in biomass and chemistry with warming and fertilization clearly indicated the rate and magnitude of change in soil fertility substantially alters plant community structure. Nonetheless, since plant nutrient concentrations decreased with warming and plant responses to browsing were independent of soil fertility, I did not find evidence for a shift from caribou decelerating to accelerating nutrient cycling with warming. Altogether this research indicates effective conservation and management of Rangifer populations is critical to understanding how climate change will affect tundra vegetation trajectories and ultimately tundra ecosystem carbon balances. / Thesis (Ph.D, Biology) -- Queen's University, 2013-06-07 15:13:21.698
239

Body Shape Diversification of Pecos Pupfish (Cyprinodon Pecosensis) on Varying Habitats as Evaluated by Geometric Morphometrics

Xu, Qianna 01 April 2017 (has links)
During the 19th and 20th centuries, alterations to the Pecos River in New Mexico and Texas, USA due to anthropogenic activities, including damning and river channelization, vast water extraction for irrigation, as well as pollution of associated habitats, have greatly impacted the fish fauna within the drainage. One of the endemic fish species, the Pecos pupfish (Cyprinodon pecosensis), might be the most affected. Historically abundant and widespread large populations have been disrupted and became a series of small isolated subpopulations that persist at a few highly fragmented habitats restricted to a small area in southern New Mexico. The connectivity among these habitats is extremely low, and can potentially prevent any gene flow among subpopulations, which might eventually result in morphological divergence among subpopulations in face of different ecological conditions. Here I utilized landmark-based Geometric Morphometrics to evaluate body shape variation of the Pecos pupfish at 26 different localities categorized into four general habitat types that each differ greatly in ecological properties. Results from this study suggest that, despite significant sexual dimorphism, body shape morphology of Pecos pupfish varied in response to spatial heterogeneity and it was most intensely influenced by specific localities within habitat types. There were overlaps of the convex hull regions of morphospace among the four habitat types, implying that ecomorphological dynamics of the Pecos pupfish were rather site-specific. Moreover, temporal variation of body morphology was statistically significant but not comparable to body shape variation among different localities. The empirical data collected from this study provides preliminary evidence for phenotypic diversity of Pecos pupfish in varied ecological conditions, which has important implications for the future conservation management of Pecos pupfish diversity and viability. Such implications could be extended to other endemic desert fishes in disrupted habitats.
240

EFFECT OF SURFACE-MANTLE WATER EXCHANGE PARAMETERIZATIONS ON EXOPLANET OCEAN DEPTHS

Komacek, Thaddeus D., Abbot, Dorian S. 16 November 2016 (has links)
Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after similar to 2 Gyr. Using these steady. states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (greater than or similar to 0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady. state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

Page generated in 0.0351 seconds