• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 19
  • 17
  • 17
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 211
  • 41
  • 24
  • 22
  • 20
  • 19
  • 19
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Tilt sensing with low-cost inertial measurement units (IMUs) : Sensor calibration, accuracy specifications and application range

Riedesel, Philipp January 2016 (has links)
Many surveying engineering applications require the knowledge of the orientation parameters of instruments. One can use inertial measurement units (IMUs) to determine that. IMUs are combinations of several inertial sensors and comprise at least an accelerometer and a gyroscope. Therefore, they can detect accelerations and angular rates in a three-dimensional space. As micro-electro-mechanical systems, the sensors are increasingly getting smaller and lighter, but without being reduced in their accuracy. The smaller size facilitates diverse placing of the sensors, which allows a variety of uses. Moreover, several low-cost IMUs have been devised since the development of single-board computers. The main objectives of this work are to determine tilts using a low-cost IMU, and the accuracy of the sensor. Furthermore, it studies general IMU applications in surveying engineering, and examines whether low-cost versions are applicable. To fulfil the objectives, the study was based on a selected low-cost IMU. Two programs were developed as part of this work. One was to control the sensor and the other, to calculate the tilts and analyse the data. The IMU was mounted in front of the objective of the total station and aligned in different reference orientations. All measurements were performed under controlled thermal conditions. Thereby, it was ensured that no falsifications could appear due to ambient temperature influences. As a first step, the sensor calibration process was completed. It helped determine the signal offset parameter and their time-dependent change. The calibration was done using two present methods, the six-position and the multi-position methods. The calibrated IMU helped determine the tilts. This was done in the case of the accelerometer via trigonometric functions, which allowed an absolute orientation statement. In contrast, the gyroscope provided relative orientation with the multiplication of the detected angular variance and the time that passed. After that, a target-actual comparison with the reference information of the total station helped determine the external accuracy of the tilt from the IMU. Moreover, multiple measurements could give a statement of the internal accuracy. Finally, the Kalman Filter was added to smooth out the sensor data and combine it in real-time. The calibration methods showed similar results, and it was striking that the sensors did not show the expected drifts. The reason could be related to a pre-calibration by the manufacturer. On the one hand, the used IMU showed differences in the total station alignments in the order of 0.798° for the accelerometer and up to 4.3° for the gyroscope with the calibrated data. On the other, the differences in repeated measurements were at 0.024° for the accelerometer and 0.5° for the gyroscope. It was figured out different possible applications of IMUs in surveying engineering. Among other things, these included orientation monitoring of sensor platforms or the determination of the external orientation of unmanned aerial systems. For these applications, the usability depends on the achievable accuracy. In the case of the IMU chosen in this study, the proven accuracy is too inaccurate for these applications. There is a need for further investigation because the use of another sensor type may rectify the insufficient accuracy problem. Moreover, to achieve better accuracies and to make it possible to use the IMU in different ambient temperatures, the temperature influence must be determined.
92

Inklinometry a gyroskopy / Inclinometers and Gyroscopes

Hývnarová, Irena January 2008 (has links)
This study deals with tilt sensors. Besides others methods, accelerometers and gyroscopes are also convenient to solve this problem. Tilt sensors which are described in this thesis are working with capacitive, piezoresistive and thermal method. Capacitive accelerometers from producer Analog Devices, STmicro and Freescale, piezoresistive accelerometers from producer Panasonic Matsushita and gyroscope ADXRS300 are tested by practical measurement. Parameters of these accelerometers are found and they are compared with parameters from producer. Measurement reliability in this study is analysed as well. This thesis is divided in chapters theoretically describing principles of particular accelerometers and the chapters containing measured data evaluation.
93

Měření náklonu pro fyzioterapii / Inclination Measurement for Physiotherapy

Stehno, Tomáš January 2011 (has links)
Master’s thesis deals with the design of the system for tilt measurement using two-axis accelerometer. Information about tilt is displayed on the graphical display and simultaneously sends on serial interface RS-232. The thesis includes the design of hardware part and program equipment.
94

Non-Linear Control of a Tilt-Rotor Quadcopter using Sliding Mode Technique

Sridhar, Siddharth 16 June 2020 (has links)
No description available.
95

Simulation Tool for Design of Multiple Photovoltaic Systems : Estimation of System Sizes, Grid Interaction, and Area Requirements

Björklund, Maria January 2021 (has links)
Photovoltaic solar power is an increasing source of energy and part of the renewable energy generation which is needed in the near future to achieve the set climate goals. When planning new photovoltaic installations, parameters which affect the design are both local conditions (e.g. weather) and system parameters such as tilt and azimuth angles. Commercial areas often have high loads during the day when solar power is available and are therefore interesting for photovoltaic installations. In order make a quick estimation of photovoltaic power potential in an area, a simulation tool which handles load profiles from multiple buildings would be desirable. The aim of this thesis project is therefore to create a tool which can simulate multiple photovoltaic systems and for each of them estimate system sizes, grid interactions, and area requirements. The simulation tool is based on Python programming with the aid of System Advisor Model, a simulation software for photovoltaic and other renewable energy tech-nologies. Optimization of orientation angles was made for clear sky with the goal of high load-generation match. Different system sizes were estimated and simulated based on different degrees of self-sufficiency, net-zero consumption, and the existing transfer capacity of the building in question. When the simulation result was compared to a detailed photovoltaic design project, some agreements between the results were found, as well as further development needs such as refining area estimation. To further develop the usability of the tool, a more user-friendly interface is needed. Other improvements could be to enable simulations of multiple direction systems and integration of the local grid structure and limitations.
96

Autonomous Control of Advanced Multirotor Unmanned Aerial Systems

Kumar, Rumit 24 May 2022 (has links)
No description available.
97

Optimal Pitch Distance and Tilt Angleof PV Power Plant for Different Climate

Alsulaiman, Mohamad, Mohammadi, Najmeh January 2020 (has links)
Finding the optimum inter-row spacing and installation tilt for tilted or ground mounted PV systems is a big issue in designing the large-scale PV systems. Increasing the array spacing leads to higher annual generated energy because of the reduced impact of row-shading, but on the other hand, it increases costs of land purchase/lease and wiring costs. Many compromises between performance and cost should be done to design an optimum large-scaled solar plant. One of the criteria in designing of solar power plants is reducing of LCOE, which reflects the cost of every unit of generated energy. Site locations have large impacts on the optimal design of pitch distance and title angles, but such impacts have not been studied extensively in the existing studies, so it is going to bridge this research gap in this thesis.   The main purpose of this research is to investigate the impact of climate conditions on the pitch distance and tilt angle for large-scale PV plant and finding the optimal pitch distance and tilt according to the least cost of production. The impact of climate and meteorological data on the self-shading loss and yield of energy are investigated through a simulation tool, which is PVsyst software here, in different tilt angles and distances between rows. The different climates can be considered by choosing site locations in different latitudes to cover all climate zones. Six cities in temperate climate, three cities in tropic climate and one city in polar climate have been selected. LCOE minimizing is a measure in finding the optimum tilt and pitch distance for a 1 MW solar system installed in different latitudes. In this study the type, size and cost of components have been assumed constant in different climate conditions. There is a wide range of variability in some economic indicators like interest rate and discount rate as well as the cost of land in different climates or even countries in the same climate; then to highlight the impacts of climate conditions on the optimal tilt and pitch distance, these parameters were assumed to be constant in this study.   The results show the optimal tilt of angles increases with getting far of equator in a range between 0° and 40° to capture more direct sunlight, and the optimal raw spacing grows in further locations to equator in a range between 4 m to 11 m to reduce self- shading loss. Moreover, the best module configuration for PV arrays (portrait or landscape) can be different in different climates.
98

Style and process of magma intrusion based on combined ground deformation data in and around Sakurajima volcano, southern Kyushu, Japan / 複合地盤変動データに基づく桜島火山のマグマ貫入形態・過程

Hotta, Kohei 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19510号 / 理博第4170号 / 新制||理||1599(附属図書館) / 32546 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 井口 正人, 教授 平原 和朗, 教授 大倉 敬宏 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
99

Google Translate in English Language Learning : A Study of Teachers' Beliefs and Practices

Laird Eriksson, Nickole January 2021 (has links)
The purpose of this study is to explore upper secondary school English teachers' beliefs and practices for free online machine translation (FOMT) tools. It is believed that students are using these tools, but the focus of this study is to highlight what teachers think and how they are addressing FOMT usage by students. Participants are currently teaching various English levels in upper secondary schools throughout Sweden and have varying degrees of experience. This study includes a brief background of previous studies detailing teachers' attitudes and methods for incorporating machine translation (MT) in their language teaching. The theoretical framework used for this study is language teacher cognition and translation in language teaching. The results reveal that the previous research conducted in this area has not yet influenced teachers' language classrooms methods. Teachers' education and language learning experience may explain this disconnect to current research. There is a common theme that teachers do not mind using FOMT tools in their personal lives but strongly recommend other sources for their students.
100

FINITE ELEMENT ANALYSIS OF FACTORS INFLUENCING DISPLACEMENT MEASUREMENT USING PLANAR INDUCTIVE SENSORS

Yu, Xueyang 01 July 2020 (has links)
No description available.

Page generated in 0.3023 seconds