• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 23
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 51
  • 37
  • 25
  • 24
  • 23
  • 22
  • 17
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Optical Properties of Condensation Trails / Optische Eigenschaften von Kondensstreifen

Rosenow, Judith 12 July 2016 (has links) (PDF)
Persistent condensation trails are clouds, induced by the exhaust of an aircraft engine in a cold and ice-supersaturated environment. These artificial ice clouds can both cool and heat the atmosphere by scattering solar radiation and absorbing terrestrial radiation, respectively. The influence of condensation trails on the Earth-atmosphere energy balance and therewith the answer to the question of the dominating process had been mostly approximated on a global scale by treating the condensation trail as plane parallel layer with constant optical properties. Individual condensation trails and the influence of the solar angle had been analyzed, always using a course spatial grid and never under consideration of the aircraft performance, generating the condensation trail. For a trajectory optimization, highly precise results of the impact of condensation trails on the radiation budget and the influence of the aircraft performance on this impact is needed, so that future air traffic may consider the main factors of flight performance on the environmental impact of condensation trails. That’s why, a model is developed in this thesis to continuously estimate the scattering and absorption properties and their dependence on the aircraft performance. / Langlebige Kondensstreifen sind Eiswolken, welche durch Kondensation von Wasserdampf an Rußpartikeln in einer eisübersättigten Atmosphäre entstehen. Der Wasserdampf entstammt einerseits aus dem Triebwerkabgas und andererseits aus der Atmosphäre. Kondensstreifen können die Atmosphäre durch Rückstreuung solarer Strahlung kühlen und durch Rückstreuung und Absorption terrestrischer Strahlung erwärmen. Der Einfluss von Kondensstreifen auf den Wärmehaushalt der Atmosphäre und damit die Antwort auf die Frage nach dem dominierenden Effekt wurde bisher zumeist auf globaler Ebene ermittelt, wobei der Kondensstreifen als planparallele Schicht mit konstanten optischen Eigenschaften angenähert wurde. Individuelle Kondensstreifen und der Einfluss des Sonnenstandes wurden bisher nur mithilfe eines groben Rasters betrachtet und niemals unter Berücksichtigung der Flugleistung des Luftfahrzeuges, welches den Kondensstreifen generiert hat. Für eine Trajektorienoptimierung sind jedoch präzise Berechnungen des Strahlungseinflusses und eine gewissenhafte Berücksichtigung der Flugleistung notwendig. Nur so kann der zukünftige Luftverkehr die Haupteinflussfaktoren der Flugeigenschaften auf den Strahlungseinfluss der Kondensstreifen berücksichtigen. Aus diesem Grund wurde in dieser Arbeit ein Modell entwickelt, welches die Eigenschaften des Strahlungstransfers durch den Kondensstreifen kontinuierlich bestimmt und die aus der Flugleistung resultierenden Parameter berücksichtigt.
122

Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projection thermique / Robot off-line programming with a mesh-based method and thermal simulation of the thermal spray process

Cai, Zhenhua 27 February 2014 (has links)
L’objectif de cette étude est d’améliorer l’extension du logiciel de programmation hors-ligne RobotStudio™ existante et de développer une nouvelle stratégie pour générer la trajectoire du robot par rapport aux paramètres essentiels de projection thermique. Notamment, l’historique de la température par rapport à la trajectoire générée est prise en compte dans cette étude.L’extension logicielle Thermal Spray Toolkit (TST) intégrée dans le cadre de RobotStudio™ est spécialement développée pour générer la trajectoire du robot en projection thermique. L’amélioration de l’extension TST dans la nouvelle version de RobotStudio™ est mise au point sur deux modules principaux :PathKit : génération de la trajectoire sur des pièces complexes.ProfileKit : modélisation du cordon singulier du dépôt et prédiction de son épaisseur en fonction des paramètres opératoires.Les déficiences existantes de l’extension TST impliquent de mettre en œuvre une méthode plus avancée qui permettra de générer la trajectoire du robot en utilisant le maillage pour le calcul d’élément finis. Ainsi, l’opération de projection thermique pourra être menée. Dans cette étude, la méthodologie de maillage est introduite afin de fournir une stratégie de choix de points de trajectoire et l’obtention d’orientations de ces points de trajectoire sur la surface à revêtir. Un module dit MeshKit est donc ajouté dans l’extension TST afin de lui apporter ces fonctionnalités nécessaires.Un couplage entre la trajectoire du robot et la répartition de chaleur du substrat a été développé, ce qui permet d’étudier l’évolution de température pendent le processus de projection thermique. / The objective of this study is to improve the add-in package of off-line programming software RobotStudio™ and to develop a new strategy for generating the robot trajectory according to the kinematic parameters of thermal spraying. The computed temperature evolution relative to the generated robot trajectory on the coating surface is also considered in this study.The add-in package Thermal Spray Toolkit (TST) integrated in RobotStudio™ is developed to generate the robot trajectory for thermal spraying. The improved TST for new version of RobotStudio™ is composed of two principle modules:PathKit: generation of robot trajectory on the free-form coating surface.ProfileKit: modeling the coating profile and prediction the coating thickness based on kinematic parameters.The existing deficiency of TST leads to the development of an advanced robot trajectory generation methodology. In this study, the new approach implements the robotic trajectory planning in an interactive manner between RobotStudio™ and the finite element analysis software (FES). It allows rearranging the imported node created on the surface of workpiece by FES and in turns generating the thermal spraying needed robot trajectories.A coupling between the robot trajectory and the heat distribution on the substrate has been developed, which allows analyzing the temperature evolution during the thermal spray process, it helps to minimize thermal variations on the substrate and to select the appropriate execution sequence of trajectory.
123

Six-legged Walking Machine: The Robot-ea308

Erden, Mustafa Suphi 01 July 2006 (has links) (PDF)
The work presented in this thesis aims to make contribution to the understanding and application of six-legged statically stable walking machines in both theoretical and practical levels. In this thesis five pieces of work, performed with and for the three-joint six-legged Robot-EA308, are presented: 1) Standard gaits, which include the well-known wave gaits, are defined and a stability analysis, in the sense of static stable walking, is performed on an analytical level. Various definitions are given / theorems are stated and proved. 2) A free gait generation algorithm with reinforcement learning is developed. Its facilities of stability improvement, smooth speed changes, and adaptation in case of a rear-leg deficiency with learning of five-legged walking are experimented in real-time on the Robot-EA308. 3) Trajectory optimization and controller design is performed for the protraction movement of a three-joint leg. The trajectory generated by the controller is demonstrated with the Robot-EA308. 4) The full kinematic-dynamic formulation of a three-joint six-legged robot is performed with the joint-torques being the primary variables. It is demonstrated that the proposed torque distribution scheme, rather than the conventional force distribution, results in an efficient distribution of required forces and moments to the supporting legs. 5) An analysis of energy efficiency is performed for wave gaits. The established strategies for determination of gait parameters for an efficient walk are justified using the Robot-EA308.
124

Rapid simultaneous hypersonic aerodynamic and trajectory optimization for conceptual design

Grant, Michael James 30 March 2012 (has links)
Traditionally, the design of complex aerospace systems requires iteration among segregated disciplines such as aerodynamic modeling and trajectory optimization. Multidisciplinary design optimization algorithms have been developed to efficiently orchestrate the interaction among these disciplines during the design process. For example, vehicle capability is generally obtained through sequential iteration among vehicle shape, aerodynamic performance, and trajectory optimization routines in which aerodynamic performance is obtained from large pre-computed tables that are a function of angle of attack, sideslip, and flight conditions. This numerical approach segregates advancements in vehicle shape design from advancements in trajectory optimization. This investigation advances the state-of-the-art in conceptual hypersonic aerodynamic analysis and trajectory optimization by removing the source of iteration between aerodynamic and trajectory analyses and capitalizing on fundamental linkages across hypersonic solutions. Analytic aerodynamic relations, like those derived in this investigation, are possible in any flow regime in which the flowfield can be accurately described analytically. These relations eliminate the large aerodynamic tables that contribute to the segregation of disciplinary advancements. Within the limits of Newtonian flow theory, many of the analytic expressions derived in this investigation provide exact solutions that eliminate the computational error of approximate methods widely used today while simultaneously improving computational performance. To address the mathematical limit of analytic solutions, additional relations are developed that fundamentally alter the manner in which Newtonian aerodynamics are calculated. The resulting aerodynamic expressions provide an analytic mapping of vehicle shape to trajectory performance. This analytic mapping collapses the traditional, segregated design environment into a single, unified, mathematical framework which enables fast, specialized trajectory optimization methods to be extended to also include vehicle shape. A rapid trajectory optimization methodology suitable for this new, mathematically integrated design environment is also developed by relying on the continuation of solutions found via indirect methods. Examples demonstrate that families of optimal hypersonic trajectories can be quickly constructed for varying trajectory parameters, vehicle shapes, atmospheric properties, and gravity models to support design space exploration, trade studies, and vehicle requirements definition. These results validate the hypothesis that many hypersonic trajectory solutions are connected through fast indirect optimization methods. The extension of this trajectory optimization methodology to include vehicle shape through the development of analytic hypersonic aerodynamic relations enables the construction of a unified mathematical framework to perform rapid, simultaneous hypersonic aerodynamic and trajectory optimization. Performance comparisons relative to state-of-the-art methodologies illustrate the computational advantages of this new, unified design environment.
125

Optimal energy utilization in conventional, electric and hybrid vehicles and its application to eco-driving

Mensing, Felicitas 03 October 2013 (has links) (PDF)
The transportation sector has been identified as one of many sources of today's energetic and environmental problems. With constantly increasing numbers of vehicles on the road, non-renewable fossil fuels are becoming scarce and expensive. In addition, due to the pollutant emissions of internal combustion engines, the transportation sector is a major producer of greenhouse gas emissions. To resolve these problems researcher are looking for technological solutions, such as more efficient components and alternative drive train technologies, on one hand. On the other hand, work is being done to ensure the most efficient utilization of available technological resources. Eco driving is one way to immediately reduce a driver's energy consumption. In this thesis the potential gains of eco driving for passenger vehicles will be discussed. The main objective of this work is to, first, identify and compare drive train specific, optimal vehicle operation. Secondly, the effect of real-life constraints on potential gains of eco driving is evaluated. In addition, an approach to integrate mathematical optimization algorithms in an advanced driver assist system for eco driving is proposed. Physical vehicle models are developed for three representative vehicles: the conventional, electric and power-split hybrid vehicle. Using real-life and standard drive cycles a baseline mission is defined by specifying trip and road constraint. Applying the dynamic programming algorithms the trajectory optimization problem is solved, minimizing energy consumption for the trip. The effect of traffic on potential gains of eco driving is discussed, considering a vehicle following situation. Integrating emission constraints in the optimization algorithm the environmental advantages of eco driving are discussed. Finally, the developed algorithms were integrated in a driver assist system. Experimental tests on a driving simulator were used to verify the effectiveness of the system, as well as driver acceptance.
126

Optical Properties of Condensation Trails

Rosenow, Judith 10 June 2016 (has links)
Persistent condensation trails are clouds, induced by the exhaust of an aircraft engine in a cold and ice-supersaturated environment. These artificial ice clouds can both cool and heat the atmosphere by scattering solar radiation and absorbing terrestrial radiation, respectively. The influence of condensation trails on the Earth-atmosphere energy balance and therewith the answer to the question of the dominating process had been mostly approximated on a global scale by treating the condensation trail as plane parallel layer with constant optical properties. Individual condensation trails and the influence of the solar angle had been analyzed, always using a course spatial grid and never under consideration of the aircraft performance, generating the condensation trail. For a trajectory optimization, highly precise results of the impact of condensation trails on the radiation budget and the influence of the aircraft performance on this impact is needed, so that future air traffic may consider the main factors of flight performance on the environmental impact of condensation trails. That’s why, a model is developed in this thesis to continuously estimate the scattering and absorption properties and their dependence on the aircraft performance.:1 Introduction 3 1.1 Motivation 3 1.2 State of the art 5 1.3 Approach 6 2 Theoretical background 9 2.1 The Earth’s atmosphere 9 2.1.1 The mean vertical structure of the atmosphere 12 2.1.2 Standard atmospheres 14 2.2 Radiation 15 2.2.1 Nature of radiation 15 2.2.2 Important metrics describing radiation 17 2.2.3 Relevant spectra and principles of radiation 19 2.2.4 Solar radiation 20 2.2.5 Terrestrial radiation 21 2.2.6 Radiative transfer and extinction 22 2.2.7 Radiative transfer equation 30 2.2.8 Energy budget of the Earth-atmosphere system 32 2.3 Thermodynamics 33 2.3.1 Atmospheric stability 33 2.3.2 Turbulence 36 2.3.3 Conditions of contrail formation 41 3 Development of a radiative forcing model 45 3.1 Model atmosphere 45 3.2 Flight performance model 46 3.3 Atmospheric radiative transfer model 49 3.3.1 Two Stream Approximation 51 3.3.2 Discrete ordinate radiative transfer solver 52 3.3.3 Methods to calculate broadband radiances and irradiances 53 3.4 Contrail life cycle model 57 3.4.1 Dissipation regime 58 3.4.2 Diffusion regime 63 3.5 Contrail radiative forcing model 74 3.5.1 Consideration of multiple scattering using a Monte Carlo simulation 74 3.5.2 Geometry of the Monte Carlo simulation 75 3.5.3 Interpretation of Beer’s law 76 3.5.4 Procedure of the Monte Carlo simulation 79 3.5.5 The extinguished power per unit length contrail 87 3.5.6 Scattering and absorption efficiencies Qs, Qa and asymmetry parameters gHG 89 3.5.7 Calibration of the Monte Carlo simulation 94 4 Calculations 99 4.1 Contrail properties 99 4.1.1 Conditions of contrail formation 100 4.1.2 Initial dimensions at the end of the dissipation regime 101 4.1.3 Microphysical properties during the diffusion regime 103 4.2 Radiative transport up to the contrail 105 4.2.1 Solar direct and diffuse radiance 106 4.2.2 Terrestrial irradiance 107 4.3 Scattering and absorption properties of radiation within the contrail 109 4.3.1 Monte Carlo simulation for solar radiation 109 4.3.2 Monte Carlo simulation for terrestrial irradiances 112 4.3.3 Relevance of multiple scattering 116 4.4 Radiative extinction 116 4.4.1 Solar zenith and azimuthal angle 118 4.4.2 Flightpath 120 4.4.3 Contrail evolution 122 4.4.4 Turbulence 126 4.4.5 Wavelength specific extinction 129 4.5 Terrestrial energy forcing of a contrail 133 4.6 Verification 135 5 Conclusion and outlook 141 5.1 Conclusion 141 5.2 Outlook 144 List of Figures 147 List of Tables 151 Abbreviations and Symbols 153 Glossary 161 Bibliography 169 Acknowledgements 183 / Langlebige Kondensstreifen sind Eiswolken, welche durch Kondensation von Wasserdampf an Rußpartikeln in einer eisübersättigten Atmosphäre entstehen. Der Wasserdampf entstammt einerseits aus dem Triebwerkabgas und andererseits aus der Atmosphäre. Kondensstreifen können die Atmosphäre durch Rückstreuung solarer Strahlung kühlen und durch Rückstreuung und Absorption terrestrischer Strahlung erwärmen. Der Einfluss von Kondensstreifen auf den Wärmehaushalt der Atmosphäre und damit die Antwort auf die Frage nach dem dominierenden Effekt wurde bisher zumeist auf globaler Ebene ermittelt, wobei der Kondensstreifen als planparallele Schicht mit konstanten optischen Eigenschaften angenähert wurde. Individuelle Kondensstreifen und der Einfluss des Sonnenstandes wurden bisher nur mithilfe eines groben Rasters betrachtet und niemals unter Berücksichtigung der Flugleistung des Luftfahrzeuges, welches den Kondensstreifen generiert hat. Für eine Trajektorienoptimierung sind jedoch präzise Berechnungen des Strahlungseinflusses und eine gewissenhafte Berücksichtigung der Flugleistung notwendig. Nur so kann der zukünftige Luftverkehr die Haupteinflussfaktoren der Flugeigenschaften auf den Strahlungseinfluss der Kondensstreifen berücksichtigen. Aus diesem Grund wurde in dieser Arbeit ein Modell entwickelt, welches die Eigenschaften des Strahlungstransfers durch den Kondensstreifen kontinuierlich bestimmt und die aus der Flugleistung resultierenden Parameter berücksichtigt.:1 Introduction 3 1.1 Motivation 3 1.2 State of the art 5 1.3 Approach 6 2 Theoretical background 9 2.1 The Earth’s atmosphere 9 2.1.1 The mean vertical structure of the atmosphere 12 2.1.2 Standard atmospheres 14 2.2 Radiation 15 2.2.1 Nature of radiation 15 2.2.2 Important metrics describing radiation 17 2.2.3 Relevant spectra and principles of radiation 19 2.2.4 Solar radiation 20 2.2.5 Terrestrial radiation 21 2.2.6 Radiative transfer and extinction 22 2.2.7 Radiative transfer equation 30 2.2.8 Energy budget of the Earth-atmosphere system 32 2.3 Thermodynamics 33 2.3.1 Atmospheric stability 33 2.3.2 Turbulence 36 2.3.3 Conditions of contrail formation 41 3 Development of a radiative forcing model 45 3.1 Model atmosphere 45 3.2 Flight performance model 46 3.3 Atmospheric radiative transfer model 49 3.3.1 Two Stream Approximation 51 3.3.2 Discrete ordinate radiative transfer solver 52 3.3.3 Methods to calculate broadband radiances and irradiances 53 3.4 Contrail life cycle model 57 3.4.1 Dissipation regime 58 3.4.2 Diffusion regime 63 3.5 Contrail radiative forcing model 74 3.5.1 Consideration of multiple scattering using a Monte Carlo simulation 74 3.5.2 Geometry of the Monte Carlo simulation 75 3.5.3 Interpretation of Beer’s law 76 3.5.4 Procedure of the Monte Carlo simulation 79 3.5.5 The extinguished power per unit length contrail 87 3.5.6 Scattering and absorption efficiencies Qs, Qa and asymmetry parameters gHG 89 3.5.7 Calibration of the Monte Carlo simulation 94 4 Calculations 99 4.1 Contrail properties 99 4.1.1 Conditions of contrail formation 100 4.1.2 Initial dimensions at the end of the dissipation regime 101 4.1.3 Microphysical properties during the diffusion regime 103 4.2 Radiative transport up to the contrail 105 4.2.1 Solar direct and diffuse radiance 106 4.2.2 Terrestrial irradiance 107 4.3 Scattering and absorption properties of radiation within the contrail 109 4.3.1 Monte Carlo simulation for solar radiation 109 4.3.2 Monte Carlo simulation for terrestrial irradiances 112 4.3.3 Relevance of multiple scattering 116 4.4 Radiative extinction 116 4.4.1 Solar zenith and azimuthal angle 118 4.4.2 Flightpath 120 4.4.3 Contrail evolution 122 4.4.4 Turbulence 126 4.4.5 Wavelength specific extinction 129 4.5 Terrestrial energy forcing of a contrail 133 4.6 Verification 135 5 Conclusion and outlook 141 5.1 Conclusion 141 5.2 Outlook 144 List of Figures 147 List of Tables 151 Abbreviations and Symbols 153 Glossary 161 Bibliography 169 Acknowledgements 183
127

A novel approach for experimental identification of vehicle dynamic parameters

Yao, Di, Ulbricht, Philipp, Tonutti, Stefan, Büttner, Kay, Prokop, Günther 18 May 2022 (has links)
Pervasive applications of the vehicle simulation technology are a powerful motivation for the development of modern automobile industry. As basic parameters of road vehicle, vehicle dynamic parameters can significantly influence the ride comfort and dynamics of vehicle, and therefore have to be calculated accurately to obtain reliable vehicle simulation results. Aiming to develop a general solution, which is applicable to diverse test rigs with different mechanisms, a novel model-based parameter identification approach using optimized excitation trajectory is proposed in this paper to identify the vehicle dynamic parameters precisely and efficiently. The proposed approach is first verified against a virtual test rig using a universal mechanism. The simulation verification consists of four sections: (a) kinematic analysis, including the analysis of forward/inverse kinematic and singularity architecture; (b) dynamic modeling, in which three kinds of dynamic modeling method are used to derive the dynamic models for parameter identification; (c) trajectory optimization, which aims to search for the optimal trajectory to minimize the sensitivity of parameter identification to measurement noise; and (d) multibody simulation, by which vehicle dynamic parameters are identified based on the virtual test rig in the simulation environment. In addition to the simulation verification, the proposed parameter identification approach is applied to the real test rig (vehicle inertia measuring machine) in laboratory subsequently. Despite the mechanism difference between the virtual test rig and vehicle inertia measuring machine, this approach has shown an excellent portability. The experimental results indicate that the proposed parameter identification approach can effectively identify the vehicle dynamic parameters without a high requirement of movement accuracy.
128

Simulating human-prosthesis interaction and informing robotic prosthesis design using metabolic optimization

Handford, Matthew Lawrence January 2018 (has links)
No description available.
129

Design, Control, and Optimization of Robots with Advanced Energy Regenerative Drive Systems

KHALAF, POYA 21 March 2019 (has links)
No description available.
130

A Partially Randomized Approach to Trajectory Planning and Optimization for Mobile Robots with Flat Dynamics

Seemann, Martin 21 May 2019 (has links)
Motion planning problems are characterized by huge search spaces and complex obstacle structures with no concise mathematical expression. The fixed-wing airplane application considered in this thesis adds differential constraints and point-wise bounds, i. e. an infinite number of equality and inequality constraints. An optimal trajectory planning approach is presented, based on the randomized Rapidly-exploring Random Trees framework (RRT*). The local planner relies on differential flatness of the equations of motion to obtain tree branch candidates that automatically satisfy the differential constraints. Flat output trajectories, in this case equivalent to the airplane's flight path, are designed using Bézier curves. Segment feasibility in terms of point-wise inequality constraints is tested by an indicator integral, which is evaluated alongside the segment cost functional. Although the RRT* guarantees optimality in the limit of infinite planning time, it is argued by intuition and experimentation that convergence is not approached at a practically useful rate. Therefore, the randomized planner is augmented by a deterministic variational optimization technique. To this end, the optimal planning task is formulated as a semi-infinite optimization problem, using the intermediate result of the RRT(*) as an initial guess. The proposed optimization algorithm follows the feasible flavor of the primal-dual interior point paradigm. Discretization of functional (infinite) constraints is deferred to the linear subproblems, where it is realized implicitly by numeric quadrature. An inherent numerical ill-conditioning of the method is circumvented by a reduction-like approach, which tracks active constraint locations by introducing new problem variables. Obstacle avoidance is achieved by extending the line search procedure and dynamically adding obstacle-awareness constraints to the problem formulation. Experimental evaluation confirms that the hybrid approach is practically feasible and does indeed outperform RRT*'s built-in optimization mechanism, but the computational burden is still significant. / Bewegungsplanungsaufgaben sind typischerweise gekennzeichnet durch umfangreiche Suchräume, deren vollständige Exploration nicht praktikabel ist, sowie durch unstrukturierte Hindernisse, für die nur selten eine geschlossene mathematische Beschreibung existiert. Bei der in dieser Arbeit betrachteten Anwendung auf Flächenflugzeuge kommen differentielle Randbedingungen und beschränkte Systemgrößen erschwerend hinzu. Der vorgestellte Ansatz zur optimalen Trajektorienplanung basiert auf dem Rapidly-exploring Random Trees-Algorithmus (RRT*), welcher die Suchraumkomplexität durch Randomisierung beherrschbar macht. Der spezifische Beitrag ist eine Realisierung des lokalen Planers zur Generierung der Äste des Suchbaums. Dieser erfordert ein flaches Bewegungsmodell, sodass differentielle Randbedingungen automatisch erfüllt sind. Die Trajektorien des flachen Ausgangs, welche im betrachteten Beispiel der Flugbahn entsprechen, werden mittels Bézier-Kurven entworfen. Die Einhaltung der Ungleichungsnebenbedingungen wird durch ein Indikator-Integral überprüft, welches sich mit wenig Zusatzaufwand parallel zum Kostenfunktional berechnen lässt. Zwar konvergiert der RRT*-Algorithmus (im probabilistischen Sinne) zu einer optimalen Lösung, jedoch ist die Konvergenzrate aus praktischer Sicht unbrauchbar langsam. Es ist daher naheliegend, den Planer durch ein gradientenbasiertes lokales Optimierungsverfahren mit besseren Konvergenzeigenschaften zu unterstützen. Hierzu wird die aktuelle Zwischenlösung des Planers als Initialschätzung für ein kompatibles semi-infinites Optimierungsproblem verwendet. Der vorgeschlagene Optimierungsalgorithmus erweitert das verbreitete innere-Punkte-Konzept (primal dual interior point method) auf semi-infinite Probleme. Eine explizite Diskretisierung der funktionalen Ungleichungsnebenbedingungen ist nicht erforderlich, denn diese erfolgt implizit durch eine numerische Integralauswertung im Rahmen der linearen Teilprobleme. Da die Methode an Stellen aktiver Nebenbedingungen nicht wohldefiniert ist, kommt zusätzlich eine Variante des Reduktions-Ansatzes zum Einsatz, bei welcher der Vektor der Optimierungsvariablen um die (endliche) Menge der aktiven Indizes erweitert wird. Weiterhin wurde eine Kollisionsvermeidung integriert, die in den Teilschritt der Liniensuche eingreift und die Problemformulierung dynamisch um Randbedingungen zur lokalen Berücksichtigung von Hindernissen erweitert. Experimentelle Untersuchungen bestätigen, dass die Ergebnisse des hybriden Ansatzes aus RRT(*) und numerischem Optimierungsverfahren der klassischen RRT*-basierten Trajektorienoptimierung überlegen sind. Der erforderliche Rechenaufwand ist zwar beträchtlich, aber unter realistischen Bedingungen praktisch beherrschbar.

Page generated in 0.2721 seconds