41 |
Managing Tsunami Risk: Social Context Influences on PreparednessPaton, Douglas, Houghton, Bruce F., Gregg, Chris E., McIvor, David, Johnston, David M., Bürgelt, Petra, Larin, Penny, Gill, Duane A., Ritchie, Liesel A., Meinhold, Steven, Horan, Jennifer 01 January 2009 (has links)
This article describes the testing of a model that proposes that people's beliefs regarding the effectiveness of hazard preparedness interact with social context factors (community participation, collective efficacy, empowerment and trust) to influence levels of hazard preparedness. Using data obtained from people living in coastal communities in Alaska and Oregon that are susceptible to experiencing tsunami, structural equation modelling analyses confirmed the ability of the model to help account for differences in levels of tsunami preparedness. Analysis revealed that community members and civic agencies influence preparedness in ways that are independent of the information provided per se. The model suggests that, to encourage people to prepare, outreach strategies must (a) encourage community members to discuss tsunami hazard issues and to identify the resources and information they need to deal with the consequences a tsunami would pose for them and (b) ensure that the community-agency relationship is complementary and empowering.
|
42 |
Scouring Around Multiple Structures in Extreme Flow ConditionsApril LeQuéré, Philippe 20 April 2022 (has links)
As world population increases, coastal areas experience an increase in human occupancy. These community locations come with a greater risk of impacts due to extreme natural events. Tsunami, being one of the most unpredictable and most devastating types of extreme hydrodynamic events, received significant attention over the past decades due to the recent extreme events (2004 Indian Ocean, 2010 Chile, 2011 Japan, 2018 Indonesia). The focus of this thesis is on investigating scour around structures generated by tsunami. Scouring was found to be one of the greatest sources of building damage during the 2011 Tohoku Japan Tsunami and, at the date of the redaction of this thesis, this phenomenon is still little understood by the scientific community. The main objective of this thesis is to study the change in scouring when multiple buildings are constructed in close proximity, as opposed to individual elements such as in the case of all previous studies focussed on tsunami-induced scour. This topic was first investigated by the candidate with the use of a numerical model, FLOW-3D, using the large eddy simulation approach and the Nielsen (1992) bed load sediment transport model. The model results showed a significant increase in scouring when a second building was located along the same transversal plane as the building investigated. Then, three structure arrangements were investigated in a comprehensive physical experiment conducted in the new Dambreak Flume of Hydraulic Laboratory of the University of Ottawa, Canada, to study the effects of (1) upstream constriction, (2) lateral spacing and (3) sheltering on tsunami-induced scour. All three structure arrangements showed a significant effect on tsunami-induced scour. A secondary project was conducted in collaboration with the Technical University of Braunschweig, Germany, and the Leibniz University Hannover, Germany. This large-scale physical experiment, performed in the Large Wave Flume of the Leibniz Institute Hannover, Germany, was used to investigate three different research phenomenon that influence tsunami scouring: (1) the wave drawdown on scour around structures, (2) the evolution of flow eddies and (3) the change in the soil’s pore pressure.
|
43 |
An Anomalous Breccia in the Mesoproterozoic (~1.1 Ga) Atar Group, Mauritania: Endogenic vs. Exogenic GenesisAden, Douglas J. 22 September 2010 (has links)
No description available.
|
44 |
The Automation of Numerical Models of Coseismic TsunamisWiersma, Codi Allen 26 August 2019 (has links)
The use of tsunami models for applications of 'now-casting', which is the prediction of the present and near future behavior, has limited exploration, and could potentially be of significant usefulness. Tsunamis are most often caused by earthquakes in subduction zones, which generates coupled uplift and subsidence, and displaces the water column. The behavior of the fault failure is difficult to describe in the short term, often requiring seismic waveform inversion, which takes a length of time on the order of weeks to months to properly model, and is much too late for any use in a now-casting sense. To expedite this length of time, a series of source models are created with variable fault geometry behaviors, using fault parameters from Northern Oceanic and Atmospheric Administration's Short-term Inundation and Forecasting of Tsunamis (SIFT) database, in order to model a series of potential tsunami behaviors using the numerical modelling package, GeoClaw. The implementation of modeling could identify areas of interest for further study that are sensitive to fault failure geometry. Initial results show that by varying the geometry of sub-faults of a given earthquake, the resulting tsunami models behave fairly differently with different wave dispersion behavior, both in pattern and magnitude. While there are shortcomings of the potential geometries the code created in this study, and there are significant improvements that can be made, this study provides a good starting point into now-casting of tsunami models, with future iterations likely involving statistical probability in the fault failure geometries. / Master of Science / Short term modeling of tsunamis generated by earthquakes is poorly explored. If an earthquake causes movement in a fault located underwater, and this movement will then cause the water column above it to be displaced. Tsunami models are sensitive to how the fault moves, and an accurate representation of this movement often takes much more time that the duration of a tsunami. This lengthy process is ineffective for short term modeling. This study instead estimates several possible scenarios of how the fault will behave, and model each of them. This will show how different locations of interest are sensitive to different geometries of fault failure. Initial results show that by varying this geometry, the tsunami wave behaves very differently, and will cause different amounts of run-up in the same location depending on which particular geometry is modeled. The automation of distinctly different earthquake sources serve as a good starting point for future work to be conducted to generate more accurate models.
|
45 |
Forward and Inverse Modeling of Tsunami Sediment TransportTang, Hui 21 April 2017 (has links)
Tsunami is one of the most dangerous natural hazards in the coastal zone worldwide. Large tsunamis are relatively infrequent. Deposits are the only concrete evidence in the geological record with which we can determine both tsunami frequency and magnitude. Numerical modeling of sediment transport during a tsunami is important interdisciplinary research to estimate the frequency and magnitude of past events and quantitative prediction of future events. The goal of this dissertation is to develop robust, accurate, and computationally efficient models for sediment transport during a tsunami. There are two different modeling approaches (forward and inverse) to investigate sediment transport. A forward model consists of tsunami source, hydrodynamics, and sediment transport model. In this dissertation, we present one state-of-the-art forward model for Sediment TRansport In Coastal Hazard Events (STRICHE), which couples with GeoClaw and is referred to as GeoClaw-STRICHE. In an inverse model, deposit characteristics, such as grain-size distribution and thickness, are inputs to the model, and flow characteristics are outputs. We also depict one trial-and-error inverse model (TSUFLIND) and one data assimilation inverse model (TSUFLIND-EnKF) in this dissertation. All three models were validated and verified against several theoretical, experimental, and field cases. / Ph. D. / Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as tsunami. Tsunamis are a series of long waves triggered by earthquakes, volcanic eruptions, landslides, and meteorite impacts. Deposits are the only concrete evidence in geological records that can be used to determine both tsunami frequency and magnitude. The numerical modeling of sediment transport in coastal hazard events is an important interdisciplinary research area to estimate the magnitude their magnitude. The goal of this dissertation is to develop several robust, accurate, and computationally efficient forward and inverse models for tsunami sediment transport. In Chapter one, a general literature review is given. Chapter two will discuss a new model for TSUunami FLow INversion from Deposits (TSUFLIND). TSUFLIND incorporates three models and adds new modules to simulate tsunami deposit formation and calculate flow condition. In Chapter three, we present an inverse model based on ensemble Kalman filtering (TSUFLIND-EnKF) to infer tsunami characteristics from deposits. This model is the first model that forms a system state to include both observable variables and unknown parameters. In Chapter four, we present a new forward model for simulating Sediment TRansport in Coastal Hazard Events, which combines with GeoClaw (GeoClaw-STRICHE). In Chapter five, we discuss the future works for TSUFLIND, TSUFLIND-EnKF, GeoClaw-STRICHE and forward-inverse framework.
|
46 |
Discovery of Paleotsunami Deposits along Eastern Sunda Arc: Potential for Megathrust Earthquakes in BaliSulaeman, Hanif Ibadurrahman 01 December 2018 (has links)
Several laterally extensive candidate tsunami deposits are preserved along coastlines facing the eastern Java Trench, indicating it has experienced mega-thrust earthquakes in the past. We investigated 37 coastal sites in Bali, Lombok, Sumba and Timor islands, many of which preserve course sand and pebble layers that overlie sharp basal contacts with scour marks into the mud, fine upward in grain size, and have bimodal grain size distributions. Other unique features are the common occurrence of marine fossils and concentrations of heavy minerals. The occurrence of these high-energy deposits interlayered with clay-rich units indicates the coarse clastics are anomalous because they were deposited in what is normally a very low-energy depositional environment. The lateral extent and paucity of thin, coarse clastic layers with marine organisms are inconsistent with local stream flood event, and the proximity to the equator of the sites diminishes the possibility of marine flood events from cyclones. The sparse, but consistent, the occurrence of at least two candidate tsunami deposits at depths of 1 and 2 meters over 950 km along the strike of the Java Trench may reveal that mega-thrust earthquakes have occurred there and generated giant tsunamis in the recent past.Five widely scattered imbricated boulder deposits are also found on Bali, Lombok, and Sumba. The boulders consist of slabs of hardpan up to 2.5 m in length and 80 cm thick that was torn from a near-shore seabed and stacked on top of one another. Some of the boulders were carried over the erosional coastal bank and deposited up to 100 meters inland. Comparisons with imbricated boulder ridges formed during the 1994 tsunami in east Java indicate that these deposits are from one or multiple tsunamis sourced by the Java Trench.Experiments in effective ways to communicate and implement tsunami disaster mitigation strategies have led us to train local communities about the 20-20-20 rule. If coastal communities experience more than 20 seconds of shaking from an earthquake, even if it is not intense, they should evacuate the coast. The time delay between the earthquake and arrival of tsunami waves is around 20 minutes, which is the time window for evacuation. Some tsunami waves may be as high as 20 meters, which is the target elevation for evacuation. Adopting the 20-20-20 rule could save thousands of lives throughout the region, especially in Bali where nearly 1 million people inhabit likely tsunami inundation zones.
|
47 |
Inversion des signaux ionosphériques des Tsunamis par la méthode des modes propres / Inversion of the ionospheric signals of tsunamis using the normal modes methodRakoto, Virgile 07 July 2017 (has links)
Les séismes de grande magnitude (MW > 7) et les tsunamis associés induisent des perturbations qui peuvent être détectées dans l’atmosphère et l’ionosphère à partir des mesures TEC (contenu total en électron). Dans cette thèse, J’étudie la possibilité d’utiliser ce signal ionosphérique afin de compléter le système de surveillance et d’alerte aux tsunamis. Ainsi, j’étudie le couplage entre la Terre solide, l’océan, l’atmosphère. Je démontre en particulier que seule la fréquence à 1.5 mHz entre les modes de tsunami et les modes de gravité atmosphériques peut être détectée via l’ionosphère et met en évidence que l’efficacité du couplage océan/atmosphère est sensible à la profondeur de l’océan et l’heure locale. Ces développements ont permis de réaliser la modélisation complète de la signature ionosphérique de 3 tsunamis d’amplitude 2, 3 et 60 cm en plein océan : respectivement le tsunami d’Haida Gwaii en 2012 et le tsunami des Kouriles en 2006 en champ lointain et le tsunami de Tohoku 2011 en champ plus proche. Enfin, nous avons démontré que l’amplitude crête à crête de la hauteur du tsunami inversée reconstruit avec moins de 20 % d’erreur l’amplitude mesurée par une bouée DART dans ces trois cas / Large earthquake (MW > 7) and tsunamis are known to induce perturbations which can be detected in the atmosphere and ionosphere using total electron content (TEC) measurements. In this thesis, I first investigated on the possibility of using these ionospheric signals in order to complete the tsunami monitoring and warning system. Thus, I study the coupling between the solid Earth, the ocean, the atmosphere. I demonstrate that only the resonance at 1.5 mHz between the tsunami modes and the atmospheric gravity modes can be detected through ionosphere and highlight the fact that the efficiency of the coupling ocean/atmosphere is sensitive to ocean depth and local time. These developments enables the complete modelling of the ionospheric signature of 3 tsunami with an amplitude of 2, 3 and 60cm in deep ocean: the 2012 Haida Gwaii and the 2006 Kuril tsunami in far field and the 2011 Tohoku tsunami in closer field respectively. Finally, we demonstrated that the peak-to- peak amplitude of the height of the inverted tsunami reconstructs with less than 20% error the amplitude measured by a DART buoy in these three cases
|
48 |
Paleotsunami History Recorded in Holocene Coastal Lagoon Sediments, Southeastern Sri LankaJackson, Kelly London 01 January 2008 (has links)
Tsunamis are low amplitude, large wavelength waves that can significantly impact coastal regions. Although their destructive impacts are clear from recent events, the frequency with which tsunamis occur is less well constrained. To better understand the tsunami history and coastal impacts in Sri Lanka, this study compares sediments deposited by the December 26, 2004, tsunami to older lagoon sediments in search of evidence for paleotsunami deposits. Results from this study illustrate that the coastal lagoons in Sri Lanka preserve tsunami deposits and can provide the first steps towards constraining the paleotsunami history of the Indian Ocean. Because Sri Lanka is a far field location relative to the Sumatra-Andaman subduction zone, the preserved tsunami deposits are likely mega-tsunami events similar in size and destruction to the December 26, 2004, tsunami. The December 26, 2004, M 9.1?9.3 Sumatra-Andaman earthquake generated a massive tsunami that propagated throughout the Indian Ocean, causing extreme coastal inundation and destruction. The southeastern coastline of Sri Lanka was impacted by the 2004 tsunami where between one and three waves inundated coastal villages, lagoons, and lowlands, killing more than 35,000 people. Karagan Lagoon, located on the southeastern coast of Sri Lanka, was impacted by two waves from this tsunami. Although the lagoon commonly is dominated by organic-rich, siliciclastic clays, silts, and fine sands, the 2004 tsunami deposited a distinct layer of coarse quartz-dominated sand between 1 and 22 cm thick. The base of the 2004 deposit is sharp and erosional and some layers feature faint subparallel laminations. The 2004 tsunami deposit is generally continuous, fines landward, and is confined to the eastern portion of Karagan Lagoon, in the direction from which the tsunami arrived. Sri Lankan lore, in conjunction with reconstructed historical earthquake data, suggests that other tsunamis likely affected Sri Lanka in the past. To test this, twenty-two 1?4 m sediment cores were collected from Karagan Lagoon, providing key information for unraveling the pre-2004 tsunami history of southeastern Sri Lanka. At depth, sixteen cores from Karagan Lagoon contain as many as ten distinct sand layers, including the deposit from the 2004 tsunami. These cores feature siliciclastic clays, silts, and fine sands that dominate the background lagoonal sedimentation that are punctuated by coarse sand layers. These sand-rich layers feature sharp, erosional bases, coarsen and fine upwards, vary in thickness from 1 to 22 cm, and include varying percentages of fine to very coarse sand, with a low-abundance of silt and clay. In the best constrained interval, three coarse sand layers include composition, grain size, grading, and sedimentary structures similar to the sediments deposited by the December 26, 2004, tsunami. The layers are identified in five of the twenty-two cores, although the thicknesses vary. Six additional less well constrained sand layers are present in four of the twenty-two cores. Cores located closer to the lagoon mouth and the eastern coastline (the direction from which the 2004 tsunami arrived) contain more sand layers than cores farther away from the tsunami wave entry point. On the basis of their sedimentary structures, geometry, and extent, these sandy layers are interpreted to represent paleotsunami deposits. AMS radiocarbon dating was used to date the bulk organic sediment from above, between, and below the ten paleotsunami layers in sediment cores from Karagan Lagoon to constrain the timing of events in southeastern Sri Lanka. Material from within the deposit was not dated because it was likely transported from various sources during the event and thus does not represent the age of the tsunami. AMS radiocarbon dates from above and below the paleotsunami layers were calibrated from radiocarbon years before present to calendar years before present (Cal YBP) using OxCal v. 4.0 (Bronk Ramsey, 1995; Bronk Ramsey, 2001) with calibration curve IntCal04 (Reimer et al., 2004). The constraining time intervals of tsunami deposits II?VI were averaged to yield deposits of ages 226, 1641, 4198, 4457, 4924 Cal YBP. Tsunamis VII?X only had sediment dated immediately below the deposit and therefore were deposited prior to 6249, 6455, 6665, and 6840 Cal YBP. In total, ten tsunami deposits, including the 2004 event, are preserved in Karagan Lagoon on the southeastern coast of Sri Lanka. The Karagan Lagoon paleotsunami deposits provide constraints on the recurrence interval of tsunamis similar in magnitude to the 2004 event. The uppermost paleotsunami units were deposited 226, 1641, 4198, 4457, and 4924 Cal YBP, based on AMS radiocarbon dating. Thus, including the 2004 event, six tsunamis affected Karagan Lagoon in the past 5500 years, yielding a recurrence interval of approximately 916 years. Three of the six events, however, occur between ~4000 and 5500 years yielding a recurrence interval of approximately 500 years for this 1500 year period. Four additional older paleotsunami deposits occur in the deeper sections of the cores and were deposited prior to 6249, 6455, 6665, and 6840 Cal YBP, yielding a recurrence interval of approximately 200 years for this time period. Assuming that Karagan Lagoon contains a complete record of tsunami events, the recurrence of tsunamis similar in magnitude to the December 26, 2004, event can occur as often as 200 years. This ?recurrence interval? is illustrated by our data for the time period with increased tsunami activity from ~4000 to 7000 Cal YBP. Tsunamis may potentially affect Sri Lanka at relatively high frequency during certain time intervals though the overall recurrence pattern of these events displays a highly irregular distribution. This extreme variability needs to be taken into consideration when such events are related to earthquake recurrence intervals. Prior to the December 26, 2004, tsunami, paleotsunami deposits in the Indian Ocean were largely unstudied and consequently, Holocene tsunami chronology was incompletely understood for the Indian Ocean. The results from this study represents the first geologic evidence of paleotsunami deposits in Sri Lanka generated by tsunamis during the past 7000 years. The identification of these paleotsunami deposits illustrates that the 2004 tsunami was not a ?one-time event,? but in fact has ancient counterparts.
|
49 |
Landslide generated tsunamis : numerical modeling and real-time predictionBrune, Sascha January 2009 (has links)
Submarine landslides can generate local tsunamis posing a hazard to human lives and coastal facilities. Two major related problems are: (i) quantitative estimation of tsunami hazard and (ii) early detection of the most dangerous landslides. This thesis focuses on both those issues by providing numerical modeling of landslide-induced tsunamis and by suggesting and justifying a new method for fast detection of tsunamigenic landslides by means of tiltmeters.
Due to the proximity to the Sunda subduction zone, Indonesian coasts are prone to earthquake, but also landslide tsunamis. The aim of the GITEWS-project (German-Indonesian Tsunami Early Warning System) is to provide fast and reliable tsunami warnings, but also to deepen the knowledge about tsunami hazards. New bathymetric data at the Sunda Arc provide the opportunity to evaluate the hazard potential of landslide tsunamis for the adjacent Indonesian islands. I present nine large mass movements in proximity to Sumatra, Java, Sumbawa and Sumba, whereof the largest event displaced 20 km³ of sediments. Using numerical modeling, I compute the generated tsunami of each event, its propagation and runup at the coast. Moreover, I investigate the age of the largest slope failures by relating them to the Great 1977 Sumba earthquake.
Continental slopes off northwest Europe are well known for their history of huge
underwater landslides. The current geological situation west of Spitsbergen is
comparable to the continental margin off Norway after the last glaciation, when the large tsunamigenic Storegga slide took place. The influence of Arctic warming on the stability of the Svalbard glacial margin is discussed. Based on new geophysical data, I present four possible landslide scenarios and compute the generated tsunamis. Waves of 6 m height would be capable of reaching northwest Europe threatening coastal areas.
I present a novel technique to detect large submarine landslides using an array of tiltmeters, as a possible tool in future tsunami early warning systems. The
dislocation of a large amount of sediment during a landslide produces a permanent elastic response of the earth. I analyze this response with a mathematical model and calculate the theoretical tilt signal. Applications to the hypothetical Spitsbergen event and the historical Storegga slide show tilt signals exceeding 1000 nrad.
The amplitude of landslide tsunamis is controlled by the product of slide volume
and maximal velocity (slide tsunamigenic potential). I introduce an inversion
routine that provides slide location and tsunamigenic potential, based on tiltmeter measurements. The accuracy of the inversion and of the estimated tsunami height near the coast depends on the noise level of tiltmeter measurements, the distance of tiltmeters from the slide, and the slide tsunamigenic potential. Finally, I estimate the applicability scope of this method by employing it to known landslide events worldwide. / Submarine Erdrutsche können lokale Tsunamis auslösen und stellen somit eine
Gefahr für Siedlungen an der Küste und deren Einwohner dar. Zwei Hauptprobleme sind (i) die quantitative Abschätzung der Gefahr, die von einem Tsunami ausgeht und (ii) das schnelle Erkennen von gefährlichen Rutschungsereignissen. In dieser Doktorarbeit beschäftige ich mich mit beiden Problemen, indem ich Erdrutschtsunamis numerisch modelliere und eine neue Methode vorstelle, in der submarine Erdrutsche mit Hilfe von Tiltmetern detektiert werden.
Die Küstengebiete Indonesiens sind wegen der Nähe zur Sunda-Subduktionszone
besonders durch Tsunamis gefährdet. Das Ziel des GITEWS-Projektes (Deutsch-
Indonesisches Tsunami-Frühwarnsystem) ist es, schnell und verlässlich vor
Tsunamis zu warnen, aber auch das Wissen über Tsunamis und ihre Anregung zu
vertiefen. Neue bathymetrische Daten am Sundabogen bieten die Möglichkeit, das
Gefahrenpotential von Erdrutschtsunamis für die anliegenden indonesischen
Inseln zu studieren. Ich präsentiere neun große Rutschungereignisse nahe Sumatra, Java, Sumbawa und Sumba, wobei das größte von ihnen 20 km³ Sediment
bewegte. Ich modelliere die Ausbreitung und die Überschwemmung der bei diesen
Rutschungen angeregten Tsunamis. Weiterhin untersuche ich das Alter der größten
Hanginstabilitäten, indem ich sie zu dem Sumba Erdbeben von 1977 in Beziehung
setze.
Die Kontinentalhänge im Nordwesten Europa sind für Ihre immensen unterseeischen Rutschungen bekannt. Die gegenwärtige geologische Situation westlich von Spitzbergen ist vergleichbar mit derjenigen des norwegischen Kontinentalhangs nach der letzten Vergletscherung, als der große Tsunamianregende Storegga-Erdrutsch stattfand. Der Einfluss der arktischen Erwärmung auf die Hangstabilität vor Spitzbergen wird untersucht. Basierend auf neuen geophysikalischen Messungen, konstruiere ich vier mögliche Rutschungsszenarien und berechne die entsprechenden Tsunamis. Wellen von 6 Metern Höhe könnten dabei Nordwesteuropa erreichen.
Ich stelle eine neue Methode vor, mit der große submarine Erdrutsche mit Hilfe
eines Netzes aus Tiltmetern erkannt werden können. Diese Methode könnte in
einem Tsunami-Frühwarnsystem angewendet werden. Sie basiert darauf, dass die
Bewegung von großen Sedimentmassen während einer Rutschung eine dauerhafte
Verformung der Erdoberfläche auslöst. Ich berechne diese Verformung und das
einhergehende Tiltsignal. Im Falle der hypothetischen Spitzbergen-Rutschung
sowie für das Storegga-Ereignis erhalte ich Amplituden von mehr als 1000 nrad.
Die Wellenhöhe von Erdrutschtsunamis wird in erster Linie von dem Produkt aus
Volumen und maximaler Rutschungsgeschwindigkeit (dem Tsunamipotential einer
Rutschung) bestimmt. Ich führe eine Inversionsroutine vor, die unter Verwendung
von Tiltdaten den Ort und das Tsunamipotential einer Rutschung bestimmt. Die
Genauigkeit dieser Inversion und damit der vorhergesagten Wellenhöhe an der Küste hängt von dem Fehler der Tiltdaten, der Entfernung zwischen Tiltmeter und Rutschung sowie vom Tsunamipotential ab. Letztlich bestimme ich die Anwendbarkeitsreichweite dieser Methode, indem ich sie auf bekannte Rutschungsereignisse weltweit beziehe.
|
50 |
GPS based analysis of earthquake induced phenomena at the Sunda ArcHöchner, Andreas January 2010 (has links)
Indonesia is one of the countries most prone to natural hazards. Complex interaction of several tectonic plates with high relative velocities leads to approximately two earthquakes with magnitude Mw>7 every year, being more than 15% of the events worldwide. Earthquakes with magnitude above 9 happen far more infrequently, but with catastrophic effects. The most severe consequences thereby arise from tsunamis triggered by these subduction-related earthquakes, as the Sumatra-Andaman event in 2004 showed. In order to enable efficient tsunami early warning, which includes the estimation of wave heights and arrival times, it is necessary to combine different types of real-time sensor data with numerical models of earthquake sources and tsunami propagation.
This thesis was created as a result of the GITEWS project (German Indonesian Tsunami Early Warning System). It is based on five research papers and manuscripts. Main project-related task was the development of a database containing realistic earthquake scenarios for the Sunda Arc. This database provides initial conditions for tsunami propagation modeling used by the simulation system at the early warning center. An accurate discretization of the subduction geometry, consisting of 25x150 subfaults was constructed based on seismic data. Green’s functions, representing the deformational response to unit dip- and strike slip at the subfaults, were computed using a layered half-space approach. Different scaling relations for earthquake dimensions and slip distribution were implemented. Another project-related task was the further development of the ‘GPS-shield’ concept. It consists of a constellation of near field GPS-receivers, which are shown to be very valuable for tsunami early warning.
The major part of this thesis is related to the geophysical interpretation of GPS data. Coseismic surface displacements caused by the 2004 Sumatra earthquake are inverted for slip at the fault. The effect of different Earth layer models is tested, favoring continental structure. The possibility of splay faulting is considered and shown to be a secondary order effect in respect to tsunamigenity for this event. Tsunami models based on source inversions are compared to satellite radar altimetry observations.
Postseismic GPS time series are used to test a wide parameter range of uni- and biviscous rheological models of the asthenosphere. Steady-state Maxwell rheology is shown to be incompatible with near-field GPS data, unless large afterslip, amounting to more than 10% of the coseismic moment is assumed. In contrast, transient Burgers rheology is in agreement with data without the need for large aseismic afterslip. Comparison to postseismic geoid observation by the GRACE satellites reveals that even with afterslip, the model implementing Maxwell rheology results in amplitudes being too small, and thus supports a biviscous asthenosphere.
A simple approach based on the assumption of quasi-static deformation propagation is introduced and proposed for inversion of coseismic near-field GPS time series. Application of this approach to observations from the 2004 Sumatra event fails to quantitatively reconstruct the rupture propagation, since a priori conditions are not fulfilled in this case. However, synthetic tests reveal the feasibility of such an approach for fast estimation of rupturing properties. / Indonesien ist eines der am stärksten von Naturkatastrophen bedrohten Länder der Erde. Die komplexe Interaktion mehrer tektonischer Platten, die sich mit hohen Relativgeschwindigkeiten zueinander bewegen, führt im Mittel zu ungefähr zwei Erdbeben mit Magnitude Mw>7 pro Jahr, was mehr als 15% der Ereignisse weltweit entspricht. Beben mit Magnitude über 9 sind weitaus seltener, haben aber katastrophale Folgen. Die schwerwiegendsten Konsequenzen hierbei werden durch Tsunamis verursacht, welche durch diese Subduktionsbeben ausgelöst werden, wie das Sumatra-Andamanen Ereignis von 2004 gezeigt hat. Um eine wirksame Tsunami-Frühwarnung zu ermöglichen, welche die Abschätzung der Wellenhöhen und Ankunftszeiten beinhaltet, ist es erforderlich, verschieden Arten von Echtzeit-Sensordaten mit numerischen Modellen für die Erdbebenquelle und Tsunamiausbreitung zu kombinieren.
Diese Doktorarbeit wurde im Rahmen des GITEWS-Projektes (German Indonesian Tsunami Early Warning System) erstellt und umfasst fünf Fachpublikationen und Manuskripte. Projektbezogene Hauptaufgabe war die Erstellung einer Datenbank mit realistischen Bebenszenarien für den Sundabogen. Die Datenbank beinhaltet Anfangsbedingungen für die Tsunami-Ausbreitungsmodellierung und ist Teil des Simulationssystems im Frühwarnzentrum. Eine sorgfältige Diskretisierung der Subduktionsgeometrie, bestehend aus 25x150 subfaults, wurde basierend auf seismischen Daten erstellt. Greensfunktionen, welche die Deformation, hervorgerufen durch Verschiebung an den subfaults ausmachen, wurden mittels eines semianalytischen Verfahrens für den geschichteten Halbraum berechnet. Verschiedene Skalierungsrelationen für Erdbebendimension und slip-Verteilung wurden implementiert. Eine weitere projektbezogene Aufgabe war die Weiterentwicklung des ‚GPS-Schild’-Konzeptes. Dieses besteht aus einer Konstellation von GPS-Empfängern im Nahfeldbereich, welche sich als sehr wertvoll für die Tsunami-Frühwarnung erweisen.
Der größere Teil dieser Doktorarbeit beschäftigt sich mit der geophysikalischen Interpretation von GPS-Daten. Coseismische Verschiebungen an der Erdoberfläche, ausgelöst durch das Erdbeben von 2004, werden nach slip an der Verwerfung invertiert. Die Wirkung verschiedener Erdschichtungsmodelle wird getestet und resultiert in der Bevorzugung einer kontinentalen Struktur. Die Möglichkeit von splay-faulting wird untersucht und erweist sich als zweitrangiger Effekt bezüglich der Tsunamiwirkung für dieses Ereignis. Die auf der Quelleninversion basierenden Tsunamimodelle werden mit satellitengestützen Radaraltimetriedaten verglichen.
Postseismische GPS-Daten werden verwendet, um einen weiten Parameterbereich uni- und bi-viskoser Modelle der Asthenosphäre zu testen. Dabei stellt sich stationäre Maxwell-Rheologie als inkompatibel mit Nahfeld-GPS-Zeitreihen heraus, es sei denn, eine große Quantität an afterslip, entsprechend etwa 10% des coseismischen Momentes, wird angenommen. Im Gegensatz dazu ist die transiente Burgers-Rheologie ohne große Mengen an afterslip kompatibel zu den Beobachtungen. Der Vergleich mit postseismischen Geoidbeobachtungen durch die GRACE-Satelliten zeigt, dass das Modell basierend auf Maxwell-Rheologie, auch mit afterslip, zu kleine Amplituden liefert, und bekräftigt die Annahme einer biviskosen Rheologie der Asthenosphäre.
Ein einfacher Ansatz, der auf einer quasi-statischen Deformationsausbreitung beruht, wird eingeführt und zur Inversion coseismischer Nahfeld-GPS-Zeitreihen vorgeschlagen. Die Anwendung dieses Ansatzes auf Beobachtungen vom Sumatra-Beben von 2004 ermöglicht nicht die quantitative Rekonstruktion der Ausbreitung des Bruches, da die notwendigen Bedingungen in diesem Fall nicht erfüllt sind. Jedoch zeigen Experimente an synthetischen Daten die Gültigkeit eines solchen Ansatzes zur raschen Abschätzung der Bruchausbreitungseigenschaften.
|
Page generated in 0.0345 seconds