1 |
The Effect of Weld Design on the Formability of Laser Tailor Welded BlanksLi, Jennfier January 2010 (has links)
Tailor welded blanks (TWBs) are used in the automotive industries as a method to meet economic, environmental and governmental demands. Conventionally, TWBs incorporated mild and low strength steels such as interstitial free and draw quality steels because of their excellent formability traits. However, due to their low strength they are unsuitable for energy absorption applications; thus, the interest of incorporating advanced high strength steels (AHSS) into the TWBs. Dual phase (DP) steel is a type of AHSS that is of interest because of its combination of high strength and good formability that is comparable to high strength low alloy (HSLA) steels. However, welding DP steel causes softening in the heat affected zone (HAZ), which leads to premature failure and reduces formability.
The aim of this thesis was to study the effect of weld design on the formability of TWBs with DP steels and with HSLA steel. This thesis is divided into three parts; the first part examines TWBs with different weld line positions, weld line orientations and strain paths. The second part investigates bead-on plate curvilinear blanks and its effect on formability of the blanks. The last part examines the effects of multiple welds on the formability of TWBs.
|
2 |
The Effect of Weld Design on the Formability of Laser Tailor Welded BlanksLi, Jennfier January 2010 (has links)
Tailor welded blanks (TWBs) are used in the automotive industries as a method to meet economic, environmental and governmental demands. Conventionally, TWBs incorporated mild and low strength steels such as interstitial free and draw quality steels because of their excellent formability traits. However, due to their low strength they are unsuitable for energy absorption applications; thus, the interest of incorporating advanced high strength steels (AHSS) into the TWBs. Dual phase (DP) steel is a type of AHSS that is of interest because of its combination of high strength and good formability that is comparable to high strength low alloy (HSLA) steels. However, welding DP steel causes softening in the heat affected zone (HAZ), which leads to premature failure and reduces formability.
The aim of this thesis was to study the effect of weld design on the formability of TWBs with DP steels and with HSLA steel. This thesis is divided into three parts; the first part examines TWBs with different weld line positions, weld line orientations and strain paths. The second part investigates bead-on plate curvilinear blanks and its effect on formability of the blanks. The last part examines the effects of multiple welds on the formability of TWBs.
|
3 |
Friction Stir Welding of High-Strength Automotive SteelOlsen, Eric Michael 05 July 2007 (has links) (PDF)
The following thesis is a study on the ability to create acceptable welds in thin-plate, ultra-high-strength steels (UHSS) by way of friction stir welding (FSW). Steels are welded together to create tailor-welded blanks (TWB) for use in the automotive industry. Dual Phase (DP) 590, 780, and 980 steel as well as Transformation-Induced Plasticity (TRIP) 590 steel with thicknesses ranging from 1.2 mm to 1.8 mm were welded using friction stir welding under a variety of processing conditions, including experiments with dissimilar thicknesses. Samples were tested under tensile loads for initial determination if an acceptable weld had been created. Acceptable welds were created in both TRIP 590 and DP 590 at speeds up to 102 centimeters-per-minute. No acceptable welds were created in the DP 780 and DP 980 materials. A series of microhardness measurements were taken across weld samples to gain understanding as to the causes of failure. These data indicate that softening, caused by both excessive heat and insufficient heat can result in weld failure. Not enough heat causes the high concentration of martensite in these materials to temper while too much heat can cause excessive hardening in the weld, through the formation of even more martensite, which tends to promote failure mode during forming operations. Laser welding is one of the leading methods for creating tailor-welded blank. Therefore, laser welded samples of each material were tested and compared to Friction Stir Welded samples. Lower strength and elongation are measured in weld failure while the failure location itself determines the success of a weld. In short, an acceptable weld is one that breaks outside the weld nugget and Heat Affected Zone (HAZ) and where the tensile strength (both yield and ultimate) along with the elongation are comparable to the base material. In unacceptable welds, the sample broke in the weld nugget or HAZ while strength and elongations were well below those of the base material samples.
|
4 |
Propriedades mecânicas de juntas soldadas com diferença de espessura pelo processo de soldagem por atrito linear com mistura em ligas de Al-Mg para aplicação na construção navalFeistauer, Eduardo Etzberger 21 March 2014 (has links)
The shipbuilding sector, as well as all modern transportation industries, is faced with demands for greater productivity while at the same time ensuring the manufacture of consistently high quality products, reducing levels of re-working, saving energy, and minimizing operational costs. Furthermore, it is imperative that new designs and all the stages of production comply with stringent environmental regulation. Within this context, the application of Friction Stir Welding (FSW) as a manufacturing process to weld Tailor Welded Blanks (TWB) for Al structures can contribute to the development of high speed craft and lightweight ships that are more fuel efficient, based on a high energetic efficient and environmental friendly welding process. In this work, the heterogeneous mechanical behavior of TWB joints welded by FSW was evaluated using quasi-static and cyclic loading, and the observed microstructural features were analyzed. The TWB joints were manufactured using dissimilar alloys and thicknesses (6 and 8mm) of particular interest in the shipbuilding sector (AA5083, AA5059 and AA6082). An evaluation of local constitutive properties in different regions through the TWB joint was performed by digital image correlation linked to the tensile test system. From the DIC data processing were generated stress concentrations diagrams and true stress-strain curves for several TWB subzones. The DIC methodology used as well as the accuracy of the proposed method are described in detail. The joints exhibited excellent mechanical properties approximately the same as those of the base metal for the joints manufactured with work hardened alloys (AA5059/AA5083) and 76% mechanical efficiency to those manufactured with the heat-treatable alloy (AA6082). The fatigue strength of the TWB joints were higher than the IIW references for welded structures in aluminum and the fracture mechanisms were characterized using SEM. / O setor de construção naval, bem como a indústria moderna, é continuamente sobrecarregada por demandas de aumento de produtividade e ao mesmo tempo precisa garantir a fabricação de produtos com alta qualidade, reduzindo os níveis de retrabalhos, economizando energia e diminuindo os custos operacionais. Adicionalmente a este paradoxo, é imperativo que os novos designs de produtos e todos os estágios de produção sejam compatibilizados com as rígidas exigências ambientais. Neste contexto, a concepção de projetos de estruturas leves soldadas por SALM em configurações sob medidas (Tailor Welded Blanks - TWB) em Al podem contribuir para produção de embarcações com eficiente consumo de combustível e redução dos níveis de eliminação de CO2 através da redução do peso de suas estruturas. Além de utilizar um processo de soldagem eficiente energeticamente e amigável ao meio ambiente. Neste trabalho as características heterogêneas de juntas em TWB soldadas por SALM foram avaliadas através de ensaios mecânicos com carregamentos quasi-estáticos e dinâmicos e, foram criadas relações entre as propriedades mecânicas das juntas e alterações microestruturas resultantes do processo de soldagem. As juntas em TWB foram produzidas com três diferentes ligas de alumínio de particular interesse da construção naval, (AA5083, AA5059 e AA6082) em configurações similares e dissimilar, com combinações de espessuras de 6 e 8mm. Acoplado ao ensaio de tração um sistema de correlação digital de imagens (DIC) foi instalado e o perfil de deformação local das juntas foram investigados durante o carregamento. A partir do processamento dos dados obtidos por DIC, diagramas de concentração de tensão e curvas de tensão-deformação locais foram computados para diferentes subzonas das juntas. O procedimento utilizado, bem como os dados obtidos e a precisão da metodologia proposta foram descritos detalhadamente. As juntas apresentaram excelentes propriedades mecânicas, equivalentes às do metal base para a junta dissimilar produzida com as ligas endurecidas por trabalho mecânico (AA5059/AA5083) e 76% de eficiência para as juntas similares produzidas com a liga tratável termicamente (AA6082). A resistência a fadiga das juntas foram superiores às referências do IIW para juntas soldadas em alumínio e os mecanismos de fratura foram caracterizados por MEV.
|
Page generated in 0.0252 seconds