Spelling suggestions: "subject:"pargeting therapy"" "subject:"argeting therapy""
1 |
Evaluating the efficacy of targeted intensive therapy facilitated by computer administered to dysphasic individualsMortley, Jane January 1998 (has links)
No description available.
|
2 |
The Preparation and Characterization of Cyclodextrin:Sterol Inclusion Complexes as Anti-Tumor TherapeuticsCowins, Janet V 15 December 2015 (has links)
An inclusion complex between β-cyclodextrin and insoluble guest compounds has been reported by several researchers. The main purpose of forming an inclusion complex between β-CD and sparingly soluble guests is to enhance the guest’s solubility and mask its undesirable properties. Preliminary studies have shown that when conjugated with target-specific moieties, these inclusion complexes can be used in pharmaceutical applications for drug delivery. β-Sitosterol, a plant sterol, has been well documented to reduce tumor cell growth and migration as well as exhibit apoptotic characteristics. An issue with this plant sterol and most pharmaceutical compounds is their lack of solubility. In this study, we propose that an inclusion complex will enhance the solubility of this sterol and change the physicochemical properties of the sparingly soluble guest. We first prepared the β-CD:β-Sitosterol inclusion complex and characterized the samples in both solid and solution state. The complex was characterized using FT-IR, DSC, SEM and NMR. IR studies of the inclusion complex and physical mixture revealed changes in the characteristic peaks of the inclusion complex suggestive of the formation of a new compound. 1HNMR studies revealed an upfield resonance shift of β-CD internal protons (H3 and H5) as an equal molar ratio of β-Sitosterol is introduced into the β-CD mixture. 2D NOESY NMR studies suggest that the initial sites of interaction of β-CD and β-Sitosterol occur between the aliphatic tail of β-Sitosterol and H3 of β-CD. 2D ROESY NMR reveals that the cyclic head of β-Sitosterol also interacts with the cavity of β-CD suggesting that β-Sitosterol may be completely encapsulated inside β-CD’s cavity. From these initial studies, we hypothesize that the β-CD-PEG-FA will facilitate absorption of β-Sitosterol and increase the drug delivery vehicle’s solubility as a whole. Since most tumor cells over-express folic acid, inclusion of folic acid in the construct of the vehicle will direct these sterols to tumor sites. β-cyclodextrin-PEG, a precursor to the bio-conjugate for antitumor delivery of sterols, was synthesized and characterized.
|
3 |
Nové ferritinové nanočástice pro specifickou lokalizaci v experimentálním melanomu u myší: in vitro a in vivo testy. / New ferritin nanoparticles for specific targeting of experimental melanoma in mice: in vitro and in vivo tests.Rajsiglová, Lenka January 2015 (has links)
Cancer diseases represent second most frequent cause of death after cardiovascular diseases in Europe. Nowadays used medical treatments like chemotherapy and radiotherapy are nonspecific and cause huge side effects. Various systems to deliver therapy directly inside the tumour microenvironment and reduce side effects are under development. Protein nanoparticles seem to be very promising strategy to achieve that goal. Our group in cooperation with CNR in Rome tested nanoparticles based on heavy chain of human ferritine. These constructs, modified to expose the tumor targeting molecule, were able to be specifically internalised by B16F10 melanoma cells in vitro. They also specifically target and localise at the sites of primary melanoma and lung metastases of different size in mouse in vivo model. These nanoparticles can carry either therapeutic or diagnostic molecules. Thus they represent a suitable candidate for further studies for potential use in clinical praxis as a diagnostic and/or therapeutic agents (theranostics). Powered by TCPDF (www.tcpdf.org)
|
4 |
Shiga toxin targeted strategy for chemotherapy and cancer immunotherapy application using copper-free « Click » chemistryKostova, Vesela 27 November 2015 (has links)
Pas de résumé / Recently targeted therapies appeared as attractive alternatives to classical antitumoral treatments. The approach, developed on the concept of targeting drug to cancer cells, aims to spear normal tissues and decrease the side effects. This doctoral dissertation focuses on developing new anticancer targeted treatments in the field of chemotherapy and cancer immunotherapy by exploiting an original targeting moiety, the B subunit of Shiga toxin (STxB). Its specific properties, such as, recognition with its receptor Gb3 overexpressed in cancer cells or in antigen-presenting cells, its unconventional intracellular trafficking, guided the choice of this protein as targeting carrier. This project is based in the use of copper-free Huisgen [3+2] cycloaddition as a coupling method, which led to successful preparation of various conjugates for their respective applications. The concept was first validated by STxB-biotin conjugate. The high yield of the reaction and the compatibility between the targeting carrier and the chemical ligation promoted the design of conjugates for chemotherapy and immunotherapy. Two therapeutical optimizations of previously developed strategy in STxB drug targeting delivery were investigated: synthesis of multivalent drug-conjugates and synthesis of conjugates containing a highly potent anticancer agent. Both approaches exploited three anticancer agents: SN38, Doxorubicin and Monomethyl auristatin F. The disulfide spacer, combined with various self-immolative systems, insured drug release. Two cytotoxic conjugates STxB–doxorubicin (STxB-Doxo) and STxB-monomethyl auristatin F (STxB-MMAF) were obtained in very high yield and demonstrated strong tumor inhibition activity in the nanomolar range on Gb3-positive cells. Based on the results the STxB-MMAF conjugate was investigated on a mouse model. The project aimed also to develop STxB bioconjugates for vaccine applications. Previous studies used B subunit as a targeting carrier coupled to an antigenic protein in order to induce a more potent immune response against cancer. The conjugates were prepared using a commercial linker, requiring modifying the antigen at first place, or by oxime ligation, where slightly acidic conditions promoted the coupling. Thus, the work presented herein proposed an alternative ligation via copper-free click chemistry especially for more sensitive antigenic proteins. Various types of conjugates were synthesised and investigated for their immune stimulation properties. The STxB targeting strategy was also applied to the development of a new vaccine based on coupling the targeting carrier to alpha-GalCer, one of the most potent immune stimulating agents known. The work focused on the synthesis of functionalised alpha-Galcer with an azide handle.
|
Page generated in 0.0579 seconds