• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 362
  • 67
  • 60
  • 21
  • 13
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 1313
  • 447
  • 444
  • 430
  • 369
  • 359
  • 359
  • 261
  • 250
  • 249
  • 243
  • 243
  • 165
  • 157
  • 156
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Origin of the circular silverpit structure, UK North Sea : meteorite impact or salt withdrawal?

Conway, Zana Kate January 2007 (has links)
The origin of the Silverpit structure, UK North Sea has been contested since its discovery on seismic data in 2002. The Silverpit structure consists of a 3 - 4km central zone of deformation, which includes a conical uplift. This is surrounded by a series of ring faults up to a maximum diameter of 20km. Meteorite impact, evaporite withdrawal, pull-apart basin tectonics and halokinesis tectonics have all been suggested as possible origins. This thesis uses a multi-discipline approach to test these hypotheses and determine with certainty the origin of the Silverpit structure. Seismic interpretation of the Silverpit structure has highlighted that deformation in the central deformation zone and beneath the structure is comparable with other meteorite craters. However, the ring faults are comparable with other structures formed by regional evaporite dissolution and movement. Seismic interpretation on a regional, 3500km2 scale proved that the structure is unique and that salt movement was taking place at the same time as the Silverpit structure was created. Unusual diagenesis in the chalk beneath the Silverpit structure was identified as a result of the presence of both unusual geophysical and geochemical signatures. An anomalous sonic log response is attributed to a significantly decreased porosity at the base of the chalk unit. Anomalously negative stable oxygen isotopes were also found in the chalk beneath the structure. Unusually elevated heat flow is the likely cause of these irregularities. The evidence presented in this thesis leads to the conclusion that the origin of the Silverpit structure is in fact two-phase. Meteorite impact has lead to the formation of the central zone of deformation and conical uplift. It has also influenced the diagenesis of the chalk beneath the crater and created a more brittle chalk unit. Regional salt withdrawal is responsible for the formation of the ring faults, which have only formed in the meteorite impact induced brittle chalk. In simple terms, a meteorite impact formed the 3km crater and then salt withdrawal produced the circular rings during several million years after the impact.
382

Petrographic Controls on Weathering of the Haney Limestone

Devine, Steven M 01 April 2016 (has links)
Although karst processes in south central Kentucky have been studied extensively, the Haney Limestone Member of the Golconda Formation has not been studied in detail in contrast to limestones stratigraphically below it that are thicker. In addition, the relationship between petrographic features of the Haney Limestone and the formation of caves and karst features has not been studied extensively compared to lithographic, petrographic, or structural variables Petrographic data were collected using core and surface exposures across the study area of south central Kentucky from northern Logan and Warren counties up toward the Rough Creek Graben region, and stratigraphic columns were constructed. Twenty-three petrographic thin-sections were made from samples collected at these sites, described, and photo documented. These studies have revealed that grain size and silica content play a role in how the Haney weathers both in surface exposure and in a cave setting. Petrographic thin-section analysis suggests that the Haney possesses a complex diagenetic history that involves several generations of calcite cementation, dolomitization, silicification, and pressure-dissolution features in the form of microstylolites and stylolites. A basal shale in the Big Clifty occurs commonly at the Big Clifty/Haney contact and acts as a confining hydrogeologic unit, which is favorable for the development of springs and caves. Studying the Haney Limestone petrographically provides an opportunity not only to study a lesser known unit, but also in the context of relating petrographic influences or controls on the morphology of Haney cave-passage development under both vadose and phreatic hydrologic regimens. Heretofore, the vast majority of cave morphological studies have only linked the hydrologic regimen to formation of cave passages, but such studies have not considered petrographic variance. This study not only relates karst features to petrographic variance, but also provides a petrographical description of the Haney across south central Kentucky, whereas many previous studies focused on Illinois and Indiana. Understanding Haney petrographic characteristics also provides context for potential carbonate hydrocarbon reservoirs and groundwater resources in the Illinois Basin region.
383

Basin Analysis of the Porter Group, Castle Hill Basin, Canterbury: Implications for Oligocene Tectonics in New Zealand.

Congdon, Linda Marie January 2003 (has links)
A basin analysis of the Oligocene Porter Group rocks in Castle Hill Basin, Canterbury, was completed. The Porter Group contains the Coleridge Formation which comprises a lower sandstone unit and an upper micritic limestone unit, and the Thomas Formation which consists of biosparite limestone and interbedded tuffs. Basin analysis provided evidence that the Coleridge Formation lower sandstone unit was deposited in an inner shelf setting based upon its moderate sorting, large grain size range, laterally continuous geometry and lack of bedforms due to intense bioturbation. The upper micritic limestone is a mid shelf deposit composed of micrite and minor clastic grains. Provenance analysis has classified the lower sandstone unit as a quartz arenite. Both metamorphic and plutonic source areas are likely for the sandstone, along with reworked grains from underlying Formations based on QFL, SEM-CL, heavy mineral and glauconite analysis. The Thomas Formation limestone is a typical New Zealand cool water biosparite deposited on the inner shelf as a result of storms and debris flows, with the upper cross-bedded limestone lithofacies being reworked by currents in shallow water. Petrographic data showing multiple stages of diagenesis at the upper contact of the Thomas Formation provides evidence for a major tectonic event. The interbedded tuffs are a result of basaltic marine volcanism on the inner to mid shelf. The tuffs are reworked and deposited by turbidity current, debris flow and storms. Analysis of a dike within the Thomas Formation volcanics showed a weakly alkaline geochemical signature that is indicative of volcanism related to extension. A regional synthesis compared the Porter Group rocks in Castle Hill Basin with Oligocene rocks in North Canterbury, West Coast and North Otago. Oligocene quartz-rich sandstones are found in Castle Hill Basin, Harper Valley, Avoca and Culverden while micritic limestone is found on the East Coast from Marlborough to Otago. Oligocene basaltic volcanics interbedded with limestone and karst unconformities are found in Castle Hill Basin, Culverden and Otago. Normal faulting may be responsible for thickness variations and several regional karst unconformities in the eastern South Island. Plate reconstructions based on sea floor magnetic anomalies also suggests the New Zealand region was tectonically active during the Oligocene. Mounting evidence, including Eocene-Oligocene faulting and volcanism in the South Island, suggests that New Zealand may not be best described as a passive margin during the Early-Mid Tertiary.
384

Comparative geomorphology of two active tectonic structures, near Oxford, North Canterbury

May, Bryce Derrick January 2004 (has links)
The North Canterbury tectonic setting involves the southward propagating margin of easterly strike-slip activity intersecting earlier thrust activity propagating east from the Alpine Fault. The resulting tectonics contain a variety of structures caused by the way these patterns overlap, creating complexities on the regional and individual feature scale. An unpublished map by Jongens et al. (1999) shows the Ashley-Loburn Fault System crossing the plains from the east connected with the Springfield Thrust Fault in the western margins, possibly the southern limit of the east-west trending strikeslip activity. Of note are two hill structures inferred to be affected by this fault system. View Hill to the west, is on the south side of this fault junction, and Starvation Hill further east, was shown lying on the north side of a left stepover restraining bend. During thrust uplift and simple tilting of the View Hill structure, at least two uplift events post date last Pleistocene aggradation accounting for variations in scarp morphology. Broad constraints on fault dip and the age of the displacement surface suggest that slip-rates are in the order of 0.5 mm/year. East from View Hill, the strike-slip fault was originally thought to curve northeast, around the southeast of Starvation Hill. But there is neither evidence of a scarp, nor other clear evidence of surface faulting at Starvation Hill, which poses the question of the extent to which folding may reflect both fault geometry and fault activity. Starvation Hill is a triangular shape, with a series of distinctive smooth, semi-planar surfaces, lapping across both sides of the hill at a range of elevations and gradients. These surfaces are thought to be remnants of old river channels, and are indicative of tilting and upwarping of the hill structure. 3D computer modelling of these surfaces, combined with studies of the cover sequence on the hill, resulted in inferences being drawn as to the location of hinge lines of a dual-hinged anticline and an overview of the tectonic history of the hill. This illustrates the potential to apply topographical and geomorphic studies to the evolution of geometrically complex structures Starvation Hill is interpreted to be the result of two fault-generated folds, one fault trending north, the other, more recent fault, trending east. These two faults are thought to be sequentially developed segments of the original fault zone inferred by Jongens et al. (1999) but with reinterpreted location and mechanism detail. The presence of two faults has resulted in overprinted differential uplift of the structure, which has been significantly degraded, especially in the southwest corner of the hill. The majority of the formation of the northerly trending structure of Starvation Hill is inferred to be pre-Otiran, with uplift of the later east trending structure continuing into the late Pleistocene and Holocene.
385

Evolution of mid-plate hotspot swells, mantle plumes, and Hawaiian basalts.

Liu, Mian. January 1989 (has links)
Studies of the evolution of hotspot swells, mantle plumes, and Hawaiian basalts are presented in three parts in this dissertation. In part 1, the evolution of mid-plate hotspot swells are simulated numerically as an oceanic plate rides over a hot, upwelling mantle plume. The transient heat transfer equations, with time- and space-dependent boundary conditions, are solved in cylindrical coordinates. Geophysical data are used to constrain the models. Formation of the Hawaiian swell requires a mechanism of convective thinning of the lithosphere. The models constrain the Hawaiian heat source to have a maximum anomalous temperature of 250-300°C, and a perturbing heat flux 5-6 times the background value. On the other hand, the Bermuda swell is likely produced by heat conduction due to weakness of the heat source. In part 2, an analytic model of axisymmetric mantle plumes is presented. Plume parameters beneath the lithosphere, which are constrained from the swell models, are used to infer the plume source regions. The Hawaiian plume likely originates near the core-mantle boundary, but other hotspots may have shallower sources. Chemical plumes are much narrower than thermal plumes because of low chemical diffusivity in the mantle. For mantle plumes driven by combined thermal-chemical diffusion, the chemical signature of the source regions may only be observed near plume centers. Finally, melt generation and extraction along the Hawaiian volcanic chain are discussed in part 3. As a part of the plate moves over the heat source, melting largely takes place in the region where the lithospheric material is engulfed and swept away by the flow of the heat source. At least three mantle components must be involved in the melt generation: the plume material, the asthenosphere, and the engulfed lithospheric material. Significant amount of melts may also come from direct melting of the upwelling plume at depths below the initial plate-plume boundary. Melt extracts continuously from an active partial melting zone of 10-20 km thick, which moves outward as heating and compaction proceed. The models explain quantitatively the general characteristics of Hawaiian volcanism as the result of plume-plate interaction.
386

Tectonic evolution of the Guerrero terrane, western Mexico.

Centeno-García, Elena. January 1994 (has links)
The Guerrero terrane of western Mexico is characterized by an Upper Jurassic-Lower Cretaceous volcanic-sedimentary sequence of arc affinity. The arc assemblage rests unconformably on partially metamorphosed rocks of possible Triassic-Jurassic age. These "basement units," the Arteaga and Placeres Complexes and the Zacatecas Formation, are composed of deformed turbidites, basalts, volcanic-derived graywackes, and blocks of chert and limestone. Sandstones from the basement units are mostly quartzitic and have a recycled orogen-subduction complex provenance. They have negative ᵋNdi (-5 to -7), model Nd ages of 1.3 Ga., and enrichment in light REE, indicating that they were supplied from an evolved continental crust. The volcanic graywackes are derived from juvenile sources (depleted in LREE and ᵋNd = +6), though they represent a small volume of sediments. Primary sources for these turbidites might be the Grenville belt or NW South America. Basement rocks in western North America are not suitable sources because they are more isotopically evolved. Igneous rocks from the basement units are of MORB affinity (depleted LREE and ᵋNdi = +10 to +6). The Jurassic(?)-Cretaceous arc volcanic rocks have ᵋNdi (+7.9 to +3.9) and REE patterns similar to those of evolved intraoceanic island arcs. Sandstones related to the arc assemblage are predominantly volcaniclastic. These sediments have positive ᵋNdi values (+3 to +6) and REE with IAV-affinity. The Guerrero terrane seems to be characterized by two major tectonic assemblages. The Triassic-Middle Jurassic "basement assemblage" that corresponds to an ocean-floor assemblage with sediments derived from continental sources, and the Late Jurassic-Cretaceous arc assemblage formed in an oceanic island arc setting. During the Laramide orogeny the arc was placed against nuclear Mexico. Then, the polarity of the sedimentation changed from westward to eastward, and sediments derived from the arc-assemblage flooded nuclear Mexico. This process marks the "continentalization" of the Guerrero terrane, which on average represents a large addition of juvenile crust to the western North American Cordillera during Mesozoic time.
387

Age and Tectonic Evolution of the Amdo Basement: Implications for Development of the Tibetan Plateau and Gondwana Paleogeography

Guynn, Jerome January 2006 (has links)
The elucidation of the geologic processes that led to the creation of the Tibetan Plateau, a large area of thick crust and high elevation, is a fundamental question in geology. This study provides new data and insight on the geologic history of central Tibet in the Jurassic and Cretaceous, prior to the Indo-Asian collision, as well as the Gondwanan history of the Lhasa and Qiangtang terranes of the plateau. This investigation is centered on the Bangong suture zone near the town of Amdo and I present new geochronology, thermochronology, thermobarometry and structural data of the Amdo basement, an exposure of high-grade gneisses and intrusive granitoids. Using a range of thermochronometers, I show there were two periods of cooling, one in the Middle-Late Jurassic after high-grade metamorphism and a second in the Early Cretaceous. I attribute Middle-Late Jurassic metamorphism, magmatism, and initial cooling of the Amdo basement to arc related tectonism that resulted in tectonic or sedimentary burial of the magmatic arc. I propose that a second period of cooling, nonmarine, clastic sedimment deposition and thrust faulting in the Early Cretaceous is related to the Lhasa-Qiangtang collision. The thermochronology reveals limited denudation between the Cretaceous and the present, indicating the existence of thickened crust when India collided with Asia in the early Tertiary. U-Pb geochronology of the orthogneisses and detrital zircon geochronology of metasedimentary rocks suggests that the Lhasa and Qiangtang terrane were located farther west along Gondwanan's northern margin than most reconstructions depict.
388

Kinematic History of the Northwestern Argentine Thrust Belt and Late Cretaceous Tectonic Underplating Beneath the Canadian Cordillera

Pearson, David Malcolm January 2012 (has links)
The American Cordillera, a major mountain belt spanning>15000 km along the western margins of North and South America, formed as a result of crustal shortening and magmatism during ocean-continent convergence. These mountains were the loci of addition and redistribution of continental crust. The contributions presented here address the style, timing, and kinematics of underthrusting of continental crust in the retroarc of the central Andes as well as the rapid burial and metamorphism of forearc rocks that contributed to magmatism in the Canadian Cordillera. This work involved geological mapping and structural analysis coupled with geo- and thermochronological analysis. In the central Andes, results confirm a southward transition in structural style and magnitude of Cenozoic shortening that coincides with the disappearance of a thick Paleozoic basin that accommodated major Cenozoic shortening. U-Pb and (U-Th)/He results also demonstrate that thrust belt kinematics in northwestern Argentina were greatly influenced by pre-orogenic heterogeneities in Cretaceous rift architecture. Results from western Canada reveal that rapid underthrusting of forearc rocks occurred during Late Cretaceous time, likely associated with an episode of shallow subduction. This event did not result in basement-involved foreland uplifts thought to be a signature of shallow subduction in the western United States and central Argentina. Taken together, this work has the major implication that variations in the pre-orogenic upper crustal architecture strongly influence the behavior of the continental lithosphere during orogenesis, a result that challenges geodynamic models that largely neglect upper plate heterogeneities.
389

Field-based evidence of sedimentary and tectonic processes related to continental collision : the Early Cenozoic basins of Central Eastern Turkey

Booth, Matthew Graham January 2013 (has links)
Turkey is widely accepted to have formed from a collage of microcontinents that rifted from the northern margin of Gondwana and assembled from the Mesozoic to Mid Cenozoic in response to the closure, collision and suturing of numerous oceanic strands in the Eastern Mediterranean. Sedimentary-tectonic basins, which formed during ocean basin closure, can yield important information about the evolution, timing and processes related to the closure of these oceanic strands. The Darende Basin and the adjacent Hekimhan Basin are two sedimentary-tectonic basins which developed during the collision and suturing of the Neotethys Ocean in the Eastern Mediterranean. The Darende and Hekimhan Basins developed as part of the northern margin of the Tauride microcontinent during the collision and suturing of Neotethys. Both basins exhibit a Jurassic to Cretaceous regional carbonate platform 'basement' overlain by a dismembered ophiolite, which was emplaced southwards during the Late Cretaceous. The basins then developed in two main phases: In the Darende Basin the first phase is characterised by non-marine clastic sediments, overlain by transgressive shallow-marine rocks. In the Hekimhan Basin, hemi-pelagic facies are deposited synchronously with the eruption of within plate-type alkaline basaltic-trachytic lavas and associated volcaniclastic sediments (later intruded by a syenitic pluton) under an extensional tectonic regime. A Paleocene-aged unconformity followed. A second phase of basin evolution during the Eocene is characterised in both basins by the deposition of variable sedimentary facies including conglomerate, sandstone, marl, shallow-marine nummulitic limestone and evaporites (and localised basaltic eruptions). These record successive deepening, shallowing and finally emergence of both basins during the Late Eocene. The Oligocene is represented by continental fluvial deposits that are only exposed in the Hekimhan Basin. The deposition of faunally diverse, shallow-marine, Miocene limestones, Pliocene subaerial basalts and Pliocene-Recent continental deposits in both basins completes the sequence. The following tectonically and eustatically controlled stages of basin development are inferred: 1) Late Cretaceous extension initiated basin development (after ophiolite emplacement), possibly related to immediate isostatic compensation and on-going slabpull during northward subduction of the remaining Neotethyan oceanic crust. The eruption of within-plate lavas and the intrusion of alkaline syenite bodies in the Hekimhan Basin reflect this extensional setting; 2) Emergence of the Darende and Hekimhan Basins in the latest Cretaceous was possibly controlled by regional flexural uplift as the down-going plate approached the subduction zone to the north (and was possibly also influenced by eustatic sea-level change); 3) Early Eocene flexural subsidence related to ‘soft collision’ of the Tauride microcontinent with Eurasia, coupled with a significant eustatic sea level rise, allowed sedimentation to resume; 4) Mid-Late Eocene ‘hard collision’ resulted in regional uplift, progressive isolation and subaerial exposure of the basins; 5) Suture tightening and compression, during the Late Eocene- Miocene, resulted in reactivation of pre-existing extensional faults and terminated marine sedimentation. Both basins were affected by predominantly sinistral strike-slip faulting during the Plio-Quaternary westward tectonic escape of Anatolia.
390

Testing alternative models of continental collision in Central Turkey by a study of the sedimentology, provenance and tectonic setting of Late Cretaceous-Early Cenozoic syn-tectonic sedimentary basins

Nairn, Steven Peter January 2011 (has links)
In central Anatolia, Turkey, a strand of the former northern Neotethys Ocean subducted northwards under the Eurasian (Pontide) active margin during Late Cretaceous–Early Cenozoic time. Subduction and regional plate convergence were associated with the generation and emplacement of accretionary complexes and supra-subduction zone-type ophiolites onto former passive margins of microcontinents. The resultant suture zones contain Late Cretaceous to Middle Eocene basins (“The Central Anatolian Basins”) including: 1) the Kırıkkale Basin; 2) the Çankırı Basin, 3) the Tuz Gölü Basin and; 4) the Haymana - Polatlı Basin. Using stratigraphic logging, igneous geochemistry, micropalaeontology and provenance studies, this study tests two end-member models of basin evolution. In model one, the basins developed on obducted ophiolitic nappes following closure of a single northern Neotethys Ocean during the latest Cretaceous. In model two, northern Neotethys comprised two oceanic strands, the İzmir-Ankara-Erzincan Ocean to the north and the Inner Tauride Ocean to the south, separated by the Niğde-Kırşehir microcontinent, which was rifted from the Gondwana continent to the south. In this scenario, the basins developed as accretionary-type basins, associated with north-dipping subduction which persisted until the Middle Eocene when continental collision occurred. Where exposed, the basements of the Central Anatolian Basins comprise the Ankara Mélange, a mainly Upper Cretaceous subduction-accretion complex and the western/northern margin of the Niğde-Kırşehir microcontinent. New geochemical data from the composite basement of the Kırıkkale Basin identify mid ocean-ridge basalt (MORB), here interpreted to represent relict Upper Cretaceous Neotethyan oceanic crust. During the latest Cretaceous, the Kırıkkale and Tuz Gölü Basins initiated in deep water above relict MORB crust and ophiolitic mélange, bordered by the Niğde-Kırşehir microcontinent to the east where marginal facies accumulated. Further west, the Haymana-Polatlı Basin represents an accretionary-type basin constructed on the Ankara Mélange. To the north, the Çankırı Basin developed on accretionary mélange, bounded by the Pontide active margin to the north. Palaeocene sedimentation was dominated by marginal coralgal reef facies and siliciclastic turbidites. Latest Palaeocene–middle Eocene facies include shelf-type Nummulitid limestone, shallow-marine deltaic pebbly sandstones and siliciclastic turbidites. This thesis proposes a new model in which two north-dipping subduction zones were active during the late Mesozoic within northern Neotethys. In the south, ophiolites formed above a subduction zone consuming the Inner Tauride Ocean until the southward retreating trench collided with the northern margin of the Tauride continent emplacing ophiolites and mélange. In the north, subduction initiated outboard of the Eurasian margin triggering the genesis of supra-subduction zone ophiolites; the subduction zone rolled back southwards until it collided with the Niğde-Kırşehir microcontinent, again emplacing ophiolites during latest Cretaceous time. Neotethyan MORB still remained to the west of the Niğde-Kırşehir microcontinent forming the basement of the Kırıkkale and Tuz Gölü Basins. Latest Palaeocene–middle Eocene regional convergence culminated in crustal thickening, folding, uplift and strike-slip faulting which represent final continental collision and the geotectonic assembly of central Anatolia.

Page generated in 0.0566 seconds