• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 10
  • Tagged with
  • 182
  • 182
  • 178
  • 176
  • 29
  • 27
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Laser-assisted CVD Fabrication and Characterization of Carbon and Tungsten Microhelices for Microthrusters

Williams, Kirk L. January 2006 (has links)
<p>Laser-induced chemical vapor deposition (LCVD) is a process enabling the deposition of solid material from a gas phase in the form of free-standing microstructures with high aspect ratios. The deposition rate, wire diameter, and material properties are sensitive to changes in temperature and gas pressure. Through experimentation these dependencies are clarified for carbon and tungsten-coated carbon microhelices to be used as heating elements in cold gas microthrusters for space applications. The integration of heaters into the thruster will raise the temperature of the gas; thus, improving the efficiency of the thruster based on specific impulse.</p><p>Deposition rate is measured during the fabrication process, and the geometrical dimensions of the spring are determined through microscopy analysis. By experimentally measuring the spring rate, material properties such as shear modulus and modulus of elasticity for LCVD-deposited carbon can be determined as a function of process parameters. </p><p>Electrothermal characterization of carbon and tungsten-coated microcoils is performed by resistively heating the coils and measuring their surface temperature and resistance in atmospheres relevant to their operating environments. Through high-resolution microscopy analysis, sources having detrimental effects on the coils are detected and minimized. The results gained from these experiments are important for efforts in improving the performance of cold gas microthrusters.</p>
22

Hierarchical finite element modelling of Biot's equations for vibro-acoustic modelling of layered poroelastic media

Hörlin, Nils-Erik January 2004 (has links)
This thesis concerns three-dimensional finite element modelling of Biot's equations for elasto-acoustic modelling of wave propagation in layered media including porous elastic materials. The concept of hierarchical (p-version) finite elements are combined with various weak forms of Biot's equations. Computationally efficient methods providing accurate solutions of sound propagation in layered porous media are discussed. The research falls within the areas linear acoustics and numerical acoustics. Important applications of the developed methods may be found within vehicle interior acoustics, e.g. engineering design of damping treatment based on multiple layers of porous materials. / QC 20100618
23

Microfabrication of miniature x-ray source and x-ray refractive lens

Ribbing, Carolina January 2002 (has links)
In several x-ray related areas there is a need for high-precision elements for x-ray generation and focusing. An elegant way of realizing x-ray related elements with high precision and low surface roughness is by the use of microfabrication; a combination of semiconductor processing techniques and miniaturization. Photolithographic patterning of silicon followed by deposition, etching, bonding and replication is used for batchwise fabrication of small well-defined structures. This thesis describes microfabrication of a miniature x-ray source and a refractive x-ray lens. A miniature x-ray source with diamond electrodes has been tested for x-ray fluorescence. Another version of the source has been vacuum encapsulated and run at atmospheric pressure. One-dimensionally focusing saw-tooth refractive x-ray lenses in silicon, epoxy, and diamond have been fabricated and tested in a synchrotron set-up. Sub-micron focal lines and gains of up to 40 were achieved. The conclusion of the thesis is that the use of microfabrication for construction of x-ray related components can not only improve the performance of existing components, but also open up for entirely new application areas.
24

Electrical Properties of Nanocrystalline WO3 for Gas Sensing Applications

Hoel, Anders January 2004 (has links)
Tungsten trioxide is a material with a variety of application areas. For example, the material is used within thin film technologies as electrochromic material in smart windows, as electrochemically functional material in thermal control applications or as active layer in gas sensing application. Metal-oxide semiconductor gas sensors are of significant interest to detect toxic and hazardous gases. The use of small and cheep sensors is preferable since a large number of sensors easily can be placed at different sites to monitor the concentration of different species without involving huge investments. In this work, WO3 nanoparticle films were produced using an advanced gas deposition unit for gas sensing applications. The structure of the WO3 nanoparticle films was determined using X-ray diffraction, neutron scattering, X-ray photoelectron spectroscopy, elastic recoil detection analysis and electron microscopy. The as deposited films consist of sub-stoichiometric WO3 and exhibit a large degree of porosity, which together with the small particle size of about 5 nm results in a large surface area and therefore excellent prospects for gas sensor applications. Investigations on the optical properties and temperature dependence of the resistance indicate hopping conduction in the WO3 films. The bandgaps for tetragonal and monoclinic WO3 were found to be direct, which is in accordance with band structure calculations. Sensor properties were investigated using resistance measurements upon test gas exposures. The experiments were performed at fixed operating temperatures as well as on temperature modulated sensors. The films of WO3 showed excellent sensitivity to H2S gas and selectivity to other gases. The responses of temperature modulated sensors were further analyzed using mathematical transformations and pattern recognition methods whereby different gases could be distinguished. We also present a sensing technique using conduction noise as a tool for detection of alcohol vapor. The relative change of the noise, due to the inserted alcohol, can be as large as two orders of magnitude.
25

Laser-assisted CVD Fabrication and Characterization of Carbon and Tungsten Microhelices for Microthrusters

Williams, Kirk L. January 2006 (has links)
Laser-induced chemical vapor deposition (LCVD) is a process enabling the deposition of solid material from a gas phase in the form of free-standing microstructures with high aspect ratios. The deposition rate, wire diameter, and material properties are sensitive to changes in temperature and gas pressure. Through experimentation these dependencies are clarified for carbon and tungsten-coated carbon microhelices to be used as heating elements in cold gas microthrusters for space applications. The integration of heaters into the thruster will raise the temperature of the gas; thus, improving the efficiency of the thruster based on specific impulse. Deposition rate is measured during the fabrication process, and the geometrical dimensions of the spring are determined through microscopy analysis. By experimentally measuring the spring rate, material properties such as shear modulus and modulus of elasticity for LCVD-deposited carbon can be determined as a function of process parameters. Electrothermal characterization of carbon and tungsten-coated microcoils is performed by resistively heating the coils and measuring their surface temperature and resistance in atmospheres relevant to their operating environments. Through high-resolution microscopy analysis, sources having detrimental effects on the coils are detected and minimized. The results gained from these experiments are important for efforts in improving the performance of cold gas microthrusters.
26

Printed Schottky Diodes based upon Zinc Oxide Materials

Persson, Emma January 2013 (has links)
The aim of this master thesis was to develop a process for fabricating Schottky diodes, using techniques that are suitable for cheap large volume mass production e.g. printing, with tetrapod structured ZnO as the semiconductor. Part of the work involved selecting suitable metals for ohmic and Schottky contact and identification of a binder that can be used for dispersion of the Zinc Oxide (ZnO). ZnO is a II-VI compound semiconductor with a wide band gap (3,4 eV). The Schottky diode is used as a rectifier. A rectifier serves the purpose to turn Alternating Current (AC) to Direct Current (DC). The Schottky diode should only conduct current in the forward direction, in the reverse direction the current should be blocked. In this thesis printed diodes were used to construct different types of rectifiers for example half wave rectifiers and full wave rectifiers. Aside from electrical properties, adhesion properties have also been investigated. Adhesion was showed to depend on not only the choice of binder, but also UV-dose and annealing temperature. Aluminum and silver together with ZnO proved to be the best materials combination with a rectification ratio up to 105−106. Different sizes of Schottky diodes were printed and the smaller diodes with an area of 0,5x0,5mm^2 performed best as a half wave rectifiers while the larger size,1x1mm^2, performed best as a full wave rectifier.
27

Multivariable process control in high temperature and high pressure environment using non-intrusive multi sensor data fusion

Nygaard, Olav Gerhard Haukenes January 2006 (has links)
<p>The main objective of this thesis is to use available knowledge about a process and combine this with measurement data from the same process to extract more information about the process. The combination of knowledge and measurement data is referred to as Multi Sensor Data Fusion, MSDF. This added information is then used to control the process towards a specified goal.</p><p>The process studied in this thesis is the process of drilling wells in a petroleum reservoir, while the oil is flowing from the reservoir. In the petroleum industry, this is defined as underbalanced drilling (UBD), where the bottom hole pressure (BHP) in the well is below the pore pressure in the reservoir.</p><p>Detailed knowledge of the process is of paramount importance when using multi sensor data fusion. Due to this, various process modelling efforts are examined and evaluated, from simple relations between parameters to a finite-element approach of modelling the fluid flow in the well during drilling. Several sensors are used in the various cases, and existing sensors such as pressure sensors and flow sensors are the main data source in the analysis. Future scenario with sensors such as pressure arrays and non-intrusive multiphase flow meters are evaluated. In addition, new positions of existing sensor systems are discussed.</p><p>The methods available for fusing the knowledge of the process represented as models together with the available data is ranging from artificial intelligent methods such as neural networks, to methods incorporating statistical analysis such as various Kalman filters. History matching techniques using gradient techniques are also examined.</p><p>The migration of reservoir fluids into the well during UBD influences the BHP of the well. The results in the thesis show that this reservoir influx can be calculated by estimating some of the important reservoir parameters such as reservoir pore pressure or reservoir permeability. These reservoir parameters can be estimated most efficiently by performing an MSDF using a detailed nonlinear model of the well and reservoir dynamic behaviour together with real-time measurements of the fluid flow parameters such as fluid temperature, fluid pressure and fluid flow rates. The unscented Kalman filter shows the best performance when evaluating both estimation accuracy and computational requirements.</p><p>Regarding available instrumentation for use during UBD, the analysis shows that there is a major potential in introducing new sensors. As new data transmission methods are emerging and making data from sensors distributed along the drillstring available, this can generate a shift in paradigm regarding real-time analysis of reservoir properties during drilling.</p><p>Controlling the process is an important usage of the information gained from the MSDF analysis. Various control methods for controlling the most important process variables are examined and evaluated. The results show that acceptable pressure control can be obtained when using the choke valve opening as the primary control parameter. However, the choke valve operation has to be closely coordinated with drilling fluid flow rate adjustments. The choke valve opening control is able to compensate for pressure variations during the whole drilling operation.</p><p>A suggested nonlinear model predictive control algorithm gives best results when looking at the control accuracy, and can easily be expanded to handle multiple control inputs and system constraints. This control algorithm uses a detailed model of the well and reservoir dynamics. The Levenberg-Marquardt algorithm is used to calculate the optimal future control variables. The main drawback of the control algorithm is computational burden. A linear control algorithm, which also is evaluated, uses less computational resources, but has less control accuracy and is more difficult to expand into a multivariable control system.</p><p>Recommendations for further work are to expand the suggested model predictive control algorithm to handle more control inputs, while reducing the computational burden by incorporating low-order models for describing the future behaviour of the well.</p>
28

Investigation of a non-uniform helicopter rotor downwash model

Hanson, Berenike January 2008 (has links)
<p>This master thesis was carried out at the Department of Aerodynamics and Flight Mechanics at Saab Aerosystems, Linköping, Sweden. It makes up the author’s final work prior to graduation in the field Applied Physics and Electrical Engineering at the Department of Electrical Engineering at The Linköping Institute of Technology (LiTH), Linköping, Sweden.</p><p> </p><p>The objective of the paper was to study a non-uniform helicopter rotor downwash model in forward flight for the unmanned helicopter Skeldar, which is under development at Saab. The main task was to compare the mentioned model with today’s uniform downwash model in order to find differences and similarities. This was done both from a modeling and a controlling perspective. To start with, an introduction is given which is followed by a helicopter theory chapter. The following three chapters deal with the theory of induced velocity, the helicopter model and the Linear Quadratic Regulator (LQR). Finally, the results are presented and discussed.</p><p> </p><p>The downwash models were derived using Momentum Theory (MT) and Blade Element Theory (BET). These two theories were combined in order to find a connection between the induced velocity and the rotor thrust coefficient. The non-uniform downwash model that was studied is proposed by Pitt & Peters and describes a linear variation of the induced velocity in the longitudinal plane.</p><p> </p><p>For the control, a LQ-regulator was chosen since it is easily implemented in MATLAB and it stabilizes the plant model by feedback and consequently creates a robust system. Before the controller could be implemented, the models had to be reduced and the states had to be divided into longitudinal and lateral ones.</p><p> </p><p>The comparison between the open systems clearly shows that differences in the inflow models propagate to all states and consequently the helicopter behaves differently in all planes. Great discrepancies are apparent for the angular velocities <em>p</em> and <em>q</em>. For Pitt & Peters’ model those states are believed to be strongly affected by the system’s positive real pole, causing a rather unstable behavior. When the systems were closed by feedback, the differences were reduced dramatically. Pitt & Peters’ model resulted in greater overshoots than the uniform model, but the overall behavior of all states was rather similar for the two models.</p><p> </p><p>It is concluded, that the adaption of Pitt & Peters’ inflow model does not make any substantial difference when a controller is implemented. The differences between the open systems, however, are reason enough to question Pitt & Peters’ model. In order to evaluate the non-uniform model properly, it has to be compared to suitable flight data which is still lacking up to this date.</p>
29

Elektronlokalisering och spinpolarisation i en kvantcirkel / Electron Localization and Spin Polarization in a Quantum Circle

Welander, Erik January 2009 (has links)
<p>Localization and magnetic properties of electrons in a thin, cyclic quasi one-dimensional GaAs wire with a central potential barrier were studied using the Hartree-Fock and LSDA (Local Spin Density Approximation, exchange only) and compared to more time consuming Quantum Monte-Carlo calculations. Within LSDA, evidence of true localization was found as well as evidence for the existence of both ferromagnetic as well as anti-ferromagnetic states. Also signs of two-dimensional spin localization was found, without associated localized electrons.</p>
30

Study of Tin Whisker Growth and their Mechanical and Electrical Properties

Nayeri Hashemzadeh, Moheb January 2005 (has links)
<p>The phenomenon of spontaneous growth of metallic filaments, known as whisker growth has been studied. Until now the problem that Sn whisker growth could cause in electronics by making shorts has been partially prohibited as Pb and Sn have been used together in solders and coating. Regulations restricting Pb use in electronics has made the need to understand Sn whisker growth more current.</p><p>It is shown that whiskers are highly resilient towards vibrations and shocks. A Sn whisker is shown to withstand 55 mA.</p><p>Results show that reflowing of the Sn plated surface does not prevent extensive whisker growth. Results show that intermetallic compound growth can not be the sole reason behind whisker growth. Nickel and silver underlayer have been shown not to prevent whisker growth, but perhaps restrain whisker growth. Heat treatment damped whisker growth considerably. It is judged that base material CuSn6 is less prone to show whisker growth than CuSn0.15 and E-Cu58.</p>

Page generated in 0.0656 seconds