• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Integrated Microwave Resonator/antenna Structures for Sensor and Filter Applications

Cheng, Haitao 01 January 2014 (has links)
This dissertation presents design challenges and promising solutions for temperature and pressure sensors which are highly desirable for harsh-environment applications, such as turbine engines. To survive the harsh environment consisting of high temperatures above 1000°C, high pressures around 300 psi, and corrosive gases, the sensors are required to be robust both electrically and mechanically. In addition, wire connection of the sensors is a challenging packaging problem, which remains unresolved as of today. In this dissertation, robust ceramic sensors are demonstrated for both high temperature and pressure measurements. Also, the wireless sensors are achieved based on microwave resonators. Two types of temperature sensors are realized using integrated resonator/antennas and reflective patches, respectively. Both types of the sensors utilize alumina substrate which has a temperature-dependent dielectric constant. The temperature in the harsh environment is wirelessly detected by measuring the resonant frequency of the microwave resonator, which is dependent on the substrate permittivity. The integrated resonator/antenna structure minimizes the sensor dimension by adopting a seamless design between the resonator sensor and antenna. This integration technique can be also used to achieve an antenna array integrated with cavity filters. Alternatively, the aforementioned reflective patch sensor works simultaneously as a resonator sensor and a radiation element. Due to its planar structure, the reflective patch sensor is easy for design and fabrication. Both temperature sensors are measured above 1000°C. A pressure sensor is also demonstrated for high-temperature applications. Pressure is detected via the change in resonant frequency of an evanescent-mode resonator which corresponds to cavity deformation under gas pressure. A compact sensor size is achieved with a post loading the cavity resonator and a low-profile antenna connecting to the sensor. Polymer-Derived-Ceramic (PDC) is developed and used for the sensor fabrication. The pressure sensor is characterized under various pressures at high temperatures up to 800°C. In addition, to facilitate sensor characterizations, a robust antenna is developed in order to wirelessly interrogate the sensors. This specially-developed antenna is able to survive a record-setting temperature of 1300°C.
12

An Experimental Study of Temperature Sensor Noise Analysis in Evaluating the Velocity of Single-Phase Air and Water Flows

Niehus, Mark T. 08 September 2008 (has links)
No description available.
13

Modeling and Testing of Fast Response, Fiber-Optic Temperature Sensors

Tonks, Michael James 09 February 2006 (has links)
The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided. For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data. An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values. Inverse heat transfer methods were used to determine the total temperature of the flow from the measured data. Both the total temperature and the film coefficient were determined simultaneously during this process. It was found that for short testing times, there were many possible solutions. In order to obtain ultimate success with this method, the uncertainty of the demodulation system must be improved and/or the simple analytical thermal model used to predict the response of the sensor needs to match the physical sensor. Whenever possible, longer testing times should be employed. Promising suggestions for extending this approach are provided. / Ph. D.
14

Ring Oscillator Based Temperature Sensor

Walvekar, Trupti 07 1900 (has links) (PDF)
The temperature sensor design discussed in this thesis, is meant mainly to monitor temperature at power outlets. Current variations in power cords have a direct impact on the surrounding temperature. Sensing these variations ,enables us to take necessary measures to prevent any hazards due to temperature rise. Thus, for this application we require a sensor with a moderate temperature error (_10C) over a sensing range of -200C to 1500C. Low power consumption and simple digitizing scheme alleviate measurement errors due to self heating effects of the sensor. A current starved inverter based ring oscillator was chosen for the sensor design in 130nm technology. The inverter delay variation with temperature is used for sensing. Linearity and process invariancy of these characteristics are fundamental to the sensor design. We observed through simulations, and confirmed by mathematical analysis, that the sensing characteristics are governed by bias current dependence on temperature. Control voltage for the bias circuitry of the oscillator determines current through the inverter stages. Hence, for linear sensing characteristics, a control voltage(Vc) just above the maximum threshold voltage of bias transistor is used. This enables generation of PTAT saturation current for current starved inverters, due to dominance of threshold voltage decrease with temperature over mobility decrease. I.Another limitation, process dependency of the sensing characteristics, was overcome through the proposed calibration based compensation technique. A changing Vc proportional to threshold voltage variation with process, process independent bias current and current temperature characteristics were obtained. This compensated for the process variation effects on frequency. Thus, a variable Vc was generated using a reference with low temperature sensitivity of 17.6_V=0C, and resistive divider combinations for various processes. Incorporating this compensation technique we achieved good linearity in sensor characteristics and a maximum temperature error of± 1.60C over the sensing range. The sensor consumes a low power of 0.29mW and also occupies minimal area.
15

Conception et réalisation de capteurs (température et pouls) imprimés sur support souple / Conception and realization of sensors (temperature, pulse) printed on flexible support

Dankoco, Mariam Dème 21 April 2016 (has links)
La thèse s’inscrit dans le cadre du projet de recherche collaborative VEADISTA (Veille à distance et alerte intelligente) qui repose sur la conception d’une technologie ergonomique à bas coût. L’objectif de cette thèse est de concevoir et de réaliser des capteurs de température et de pression imprimés sur support flexible pour des applications biomédicales. Ils doivent être adaptés à une intégration sur un transpondeur passif télé-alimenté, conformables pour s’adapter au bras du patient, bas coût et permettant un transfert technologique vers l’industrie.Des prototypes de tests ont été réalisés dans le but d’identifier la topologie et la couche active les plus prometteuses pour la réalisation des capteurs de température en tout imprimé sur support souple. A l’issue de cette étude préliminaire, une thermorésistance à base d’encre d’argent a été réalisée par jet d’encre sur un substrat flexible. La caractérisation de ces capteurs a permis d’évaluer leur sensibilité et d’attester de leur bonne linéarité.Des tests préliminaires sur des capteurs commerciaux ont ensuite été effectués pour démontrer qu’il était possible de détecter le rythme cardiaque avec un capteur de pression. A la suite de cette étude, des capteurs de pression sur support souple ont été fabriqués en utilisant la technologie jet d’encre. Ces capteurs ont été caractérisés électriquement sous contrainte mécanique contrôlée. Pour aboutir à ces résultats, de nombreux développements technologiques ont été réalisés autour de la technique d’impression par jet d’encre. La maîtrise du triptyque encre-tête d’impression-substrat est en effet indispensable pour l’obtention de motifs de qualité. / This thesis is a part of the collaborative research project VEADISTA (Remote monitoring of vital parameters and smart alerts) based on the conception of an ergonomic technology at low-cost.The objective of this thesis is to design and to realize printed temperature and pressure sensors on flexible support for biomedical applications. Subsequent to this, these sensors must be suitable to an integration on a passive transponder remotely powered, conformable to fit the patient's arm, low cost and allowing a technological transfer towards industry.Prototype tests were realized in order to identify the most promising topology and active layer to achieve printed temperature sensors on flexible support. At the end of this preliminary study, a RTD based on a silver ink was performed by inkjet on a flexible substrate (Kapton). The characterization of these sensors allowed to assess their sensitivity and to attest to their good linearity.The preliminary tests on commercial sensors were then made to demonstrate that it was possible to detect the heart rate with a pressure sensor. Following this study, pressure sensors were manufactured on flexible support using inkjet technology. These sensors were electrically characterized under controlled mechanical constraint. To achieve these results, many technological developments were realized around the inkjet printing technique. The mastery of the ink – inkjet head – substrate interaction is indeed essential for obtaining good printed quality and functional sensors.
16

Development of a high temperature sensor suitable for post-processed integration with electronics

Tabasnikov, Aleksandr January 2018 (has links)
Integration of sensors and silicon-based electronics for harsh environment applications is driven by the automotive industry and the maturity of semiconductor processes that allow embedding sensitive elements onto the same chip without sacrificing the performance and integrity of the electronics. Sensor devices post-processed on top of electronics by surface micromachining allow the addition of extra functionality to the fabricated ICs and creating a sensor system without significant compromise of performance. Smart sensors comprised of sensing structures integrated with silicon carbide-based electronics are receiving attention from more industries, such as aerospace, defense and energy, due to their ability to operate in very demanding conditions. This thesis describes the design and implementation of a novel, integrated thin film temperature sensor that uses a half-bridge arrangement to measure thin film platinum sensitive elements. Processes have been developed to fabricate temperature insensitive thin film tantalum nitride resistors which can be combined with the platinum elements to form the temperature transducing bridge. This circuit was designed to be integrated with an existing silicon carbide-based instrumentation amplifier by post-CMOS processing and to be initially connected to the bond pads of the amplifier input and output ports. Thin films fabricated using the developed TaN and Pt processes have been characterized using resistive test structures and crystallographic measurements of blanket thin film layer samples, and the relationship between the measurement results obtained has been analyzed. An initial demonstration of temperature sensing was performed using tantalum nitride and platinum thin film resistor element chips which were fabricated on passivated silicon substrates and bonded into high temperature packages. The bridge circuit was implemented by external connections through a printed circuit board and the bridge output was connected to a discrete instrumentation amplifier to mimic the integrated amplifier. The temperature response of the circuit measured at the output of the amplifier was found to have sensitivity of 844 μV·°C–1 over the temperature range of 25 to 100 °C. Two integrated microfabrication process flows were evaluated in this work. The initial process provided a very low yield for contact resistance structures between TaN and Pt layers, which highlighted problems with the thin film platinum deposition process. Multiple improvement options have been identified among which removal of the dielectric layer separating TaN and Pt layers and thicker Pt film were considered and a redesign of both layout and the process flow has resulted in improved yield of platinum features produced directly on top of TaN features. Temperature sensitivity of the integrated sensor devices was found to depend significantly on parasitic elements produced by thin film platinum step coverage, the values of which were measured by a set of resistive test structures. A new microfabrication design has enabled the production of a group of integrated temperature sensors that had a sensitivity of 150.84 μV·°C–1 in the temperature range between 25 and 200 °C on one of the fabricated wafers while the best fabricated batch of sensors had a sensitivity of 1079.2 μV·°C–1.
17

Operation and Monitoring of Parabolic Trough Concentrated Solar Power Plant

Amba, Harsha Vardhan 04 November 2015 (has links)
The majority of the power generated today is produced using fossil fuels,emitting carbon dioxide and other pollutants every second. Also, fossil fuels will eventually run out. For the increasing worldwide energy demand, the use f reliable and environmentally beneficial natural energy sources is one of the biggest challenges. Alongside wind and water, the solar energy which is clean, CO2-neutral and limitless, is our most valuable resource. Concentrated solar power (CSP) is becoming one of the excellent alternative sources for the power industry. The successful implementation of this technology requires the efficient design of tracking and operation system of the CSP solar plants. A detailed analysis of components needed for the design of cost-effective and optimum tracker for CSP solar systems is required for the power plant modeling, which is the primary subject of this thesis. A comprehensive tracking and operating system of a parabolic trough solar power plant was developed focusing primarily on obtaining optimum and cost effective design through the simplified methodology of this work. This new model was implemented for a 50 kWe parabolic trough solar power plant at University of South Florida, Tampa.
18

Návrh tepelně-regulačního systému pro přesnou stabilizaci teploty s využitím Peltierových termoelektrických modulů / Design of thermal system for accurate temperature stabilization using Peltier thermoelectric modules

Motl, Jakub January 2011 (has links)
This master’s thesis describes design procedure of a heat-regulating system to stabilize its temperature using a Peltier module. The implementation uses eight-bit microcontroller ATmega16 made by company ATMEL for the local and remote control system. The temperature sensors communicate with the microcontroller by serial SPI interface. To display user data, it has a DEM16217SYH type character LCD display with HD44780 control circuit. To collect data from the cooling areas of Peltier module, accurate ADT7320 temperature sensors are used, made by company Analog Devices. The Control of the Peltier module happens in two points of the electrode system and a bistable hysteresis software regulator is used. The first part summarizes the theory, which concerns with the design. Next part concerned with issues of the Peltier module, overview of temperature sensors, description of the microcontroller, the display unit and the used regulator. Last part describes the hardware and software implementation.
19

TEMPERATURE AND GAS SENSING CHARACTERISTICS OF GRAPHITE/POLYMER (PEO) BASED COMPOSITE STRUCTURES

BHARGAVA, SUMEET 02 October 2006 (has links)
No description available.
20

Controlling a photovoltaic module's surface temperature to ensure high conversion efficiency

Ozemoya, Augustine 06 1900 (has links)
M. Tech. (Engineering, Electrical, Department Electronic Engineering, Faculty of Engineering and Technology), Vaal University of Technology / In order to facilitate sustainable development, it is necessary to further improve and increase the energy efficiency and use of renewable energy and its related technologies. The main limiting factors to the extensive use of photovoltaic (PV) modules include the high initial investment cost and the relatively low conversion efficiency. However, other factors, such as an increase in ambient temperature, exert a considerable negative influence on PV modules, with cell efficiencies decreasing as the cell’s operating temperature increases. Higher PV module surface temperatures mean lower output voltages and subsequent lower output power. Therefore, this dissertation focuses on optimizing the available output power from a PV module by investigating and controlling the effect that the PV module’s surface temperature exerts on the amount of electrical energy produced. A pilot study was conducted by using a PV module set to three different tilt angles with an orientation angle and temperature sensors placed at different points. This was done to determine temperature distribution on the PV module surfaces as well as identify which tilt angle produces the highest PV module surface temperature. The main study was designed to investigate the electrical performance of a PV module with different cooling systems (water and forced air) as against a referenced measurement (no cooling). The cooling systems will be switched on and off at specific time intervals with the help of an electronic timer circuit incorporating a PIC microcontroller. The pilot study was conducted for a 50 week period where the results indicated a direct correlation between temperature rise and voltage decrease. The PV module’s temperature is highest at a tilt angle of 16° during the day and lowest at night time. It further reveals that the PV module’s front and back surface temperature can be distinctly different, with the highest recorded values occurring at the back of the PV module. The main study was conducted for a period of 15 weeks with results indicating that the water cooling system resulted in an average higher output power of 49.6% when compared to the reference system (no cooling system). Recommendations are made that sufficient space should be included between the module frames and mounting structure to reduce high operating temperatures owing to poor air circulation.

Page generated in 0.0656 seconds