• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1299
  • 1010
  • 308
  • 143
  • 72
  • 44
  • 34
  • 32
  • 28
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • Tagged with
  • 3523
  • 508
  • 408
  • 366
  • 331
  • 288
  • 264
  • 229
  • 227
  • 227
  • 205
  • 188
  • 173
  • 172
  • 167
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Interrupção das fibras brancas nos acessos cirúrgicos ao corno temporal do ventrículo lateral: estudo anatômico / White matter interruption in the surgical approaches to the temporal horn of the lateral ventricle

Kadri, Paulo Abdo do Seixo 22 January 2016 (has links)
Introdução: A exploração cirúrgica do como temporal do ventrículo lateral (CTVL) é realizada para o tratamento de lesões neoplásica, vasculares e, principalmente, para o tratamento cirúrgico da epilepsia do lobo temporal. As abordagens cirúrgicas a esta cavidade são realizadas, a partir da superficie cortical e através de suas paredes, pelos acessos laterais, transsilvianos e inferiores. A escolha do acesso cirúrgico se baseia na exposição adequada e nas alterações neurológicas que possam advir do trauma ao parênquima cerebral. A secção dos diferentes feixes de fibras brancas pode resultar em déficits neurológicos mais duradouros do que a lesão ao córtex cerebral. Os déficits visuais oriundos da interrupção das fibras da radiação óptica são os mais estudados. A identificação das interrupções dos demais conjuntos de fibras e as correlações dos déficits neurológicos originados têm sido subestimadas na literatura Objetivo: Avaliar a interrupção dos feixes de fibras brancas nos diferentes acessos cirúrgicos ao como temporal do ventrículo lateral, utilizando a técnica de dissecção de fibras brancas de Klinger. Métodos: Para o estudo, foram utilizados 40 hemisférios cerebrais cadavéricos adultos (20 encéfalos) preparados no Laboratório de Anatomia da UFMS de acordo com a descrição do método de preparação de Klinger. As aberturas da cavidade ventricular, mimetizando os acessos cirúrgicos lateral (através do giro temporal médio), inferior (através do giro parahipocampal), transsilviano e transuncal foram realizados por meio de incisões de l5 mm a partir das superficies corticais. Resultados: A introdução dos instrumentos de dissecção, de 15 mm de largura por 2 mm de espessura, garantiu a uniformidade das transecções das fibras da superficie cortical à cavidade ventricular. Como resultado obteve­se o acesso que causou menor comprometimento de fibras brancas foi o acesso transucal, esse que atingiu apenas 8,3% das fibras analisadas, sendo as fibras em \"U\" situadas no córtex piriforme. Em seguida, os acessos inferior e transsilviano causaram lesões em 25% das fibras brancas. O acesso que acometeu o maior número de fibras, sendo considerado o mais lesivo para a substância branca foi o acesso lateral, esse que acometeu 75% das fibras analisadas durante a pesquisa. Conclusão: O acesso lateral através do giro temporal médio ocasiona lesões da porção inferior do fascículo longitudinal superior (segmento arqueado e vertical), do fascículo uncinado (segmento dorso lateral da porção temporal), do fascículo occipitofrontal (segmento ventral da porção posterior), da comissura anterior (segmento posterior da extensão lateral), das fibras temporopontinas, do pedúnculo talârnico posterior (alça temporal), do pedúnculo talâmico inferior (fibras posteriores) e do tapete. O acesso transsilviano ocasiona lesões do fascículo uncinado (segmento ventromedial da porção temporal), da comissura anterior (segmento anterior da extensão lateral) e da substância cinzenta da amígdala. O acesso inferior, através do giro parahipocampal, ocasiona lesões do segmento inferior do cíngulo e da formação hipocampal. O acesso transuncallesa apenas a substância cinzenta da amígdala . / Introduction: Surgical access to the temporal hom of lateral ventric1e is performed to treat tumoral and vascular lesions, but mainly to the surgi cal treatment of temporal epilepsy. The surgi cal exploration of this cavity is realized from the cortical surface towards the ventricular walls, through the lateral, transsylvian and inferior approaches, based on the adequate exposure of the cavity and on the postoperative deficits that might be originated from the brain parenchymal trauma. Lesions to the fibers bundles often result in more severe and prolonged deficits than corticallesions. The most common recognized deficits are the visual fields defects secondary to injuries to the optic radiation. Identification of the interruption of other fibers bundles involved and their correlated c1inical manifestation have been underestimated on the literature. Objective: To identify the interruption of the fiber bundles originated from the different approaches to the temporal hom utilizing the Klinger\'s fiber dissection technique. Methods: We studied 40 cerebral hemispheres of 20 brains, prepared according to Klingers method, at the UFMS Laboratory of Anatomy. The surgical access of the temporal hom was performed simulating the lateral (middle temporal gyrus), inferior (parahippocampal gyrus), transsylvian and transuncal approaches, through 15 mm cortical incisions, followed by stepwise dissection of the fibers. Results: Introduction ofthe dissector (15 mm width, 2 mm height) warranted an uniform transection of the fibers from the cortical surface to the ventricular cavity. The least destructive access encountered was the transuncal access, interrupting 8,3% of the studied fibers. Following it, the inferior and the transsylvian approaches interrupted 25% of the fibers. The most destructive, interrupting 75% of the studied fibers was the lateral approach. Conclusion: The lateral approach through the middle temporal gyrus caused interruptions on the inferior portion (vertical and arcuate segments) of the superior longitudinal fasciculus; on the dorso lateral segment of the temporal portion from the uncinate fasciculus; on the ventral segment of the posterior portion from the occipitofrontal fasciculus; on the posterior segrnent of the lateral extension from the posterior commissure; on the temporopontine fibers; on the anterior loop of the posterior thalamic pedunc1e, on the posterior fibers of the inferior thalamic pedunc1e and the tapetum fibers. The transsylvian approach caused interruptions on the ventromedial segrnent of the temporal portion from the uncinate fasciculus; on the anterior segrnent of the lateral extension from the anterior commissure and transected the amygdala on its anterosuperior surface. The inferior approach through the parahippocampal gyrus caused interruptions on the inferior segment of the cingulum and on the fimbria, due to the transection of the hipocampal formation. The transuncal approach only transected the amygdala
142

Handling Over-Constrained Temporal Constraint Networks

Beaumont, Matthew, n/a January 2004 (has links)
Temporal reasoning has been an active research area for over twenty years, with most work focussing on either enhancing the efficiency of current temporal reasoning algorithms or enriching the existing algebras. However, there has been little research into handling over-constrained temporal problems except to recognise that a problem is over-constrained and then to terminate. As many real-world temporal reasoning problems are inherently over-constrained, particularly in the scheduling domain, there is a significant need for approaches that can handle over-constrained situations. In this thesis, we propose two backtracking algorithms to gain partial solutions to over-constrained temporal problems. We also propose a new representation, the end-point ordering model, to allow the use of local search algorithms for temporal reasoning. Using this model we propose a constraint weighting local search algorithm as well as tabu and random-restart algorithms to gain partial solutions to over-constrained temporal problems. Specifically, the contributions of this thesis are: The introduction and empirical evaluation of two backtracking algorithms to solve over-constrained temporal problems. We provide two backtracking algorithms to close the gap in current temporal research to solve over-constrained problems; The representation of temporal constraint networks using the end-point ordering model. As current representation models are not suited for local search algorithms, we develop a new model such that local search can be applied efficiently to temporal reasoning; The development of a constraint weighting local search algorithm for under-constrained problems. As constraint weighting has proven to be efficient for solving many CSP problems, we implement a constraint weighting algorithm to solve under-constrained temporal problems; An empirical evaluation of constraint weighting local search against traditional backtracking algorithms. We compare the results of a constraint weighting algorithm with traditional backtracking approaches and find that in many cases constraint weighting has superior performance; The development of a constraint weighting local search, tabu search and random-restart local search algorithm for over-constrained temporal problems. We extend our constraint weighting algorithm to solve under-constrained temporal problems as well as implement two other popular local search algorithms: tabu search and random-restart; An empirical evaluation of all three local search algorithms against the two backtracking algorithms. We compare the results of all three local search algorithms with our twobacktracking algorithms for solving over-constrained temporal reasoning problems and find that local search proves to be considerably superior.
143

Maturité du projet d'urbanisme et temporalités : Détermination de la maturité du projet selon son épaisseur et sa transversalité temporelles / The maturity of the project and its temporalities : Characterization of the maturity of the project by its temporal thickness and transversality

Jolivet, Delphine 26 November 2012 (has links)
L’intérêt de cette recherche est d’aider à la compréhension du processus de projet, par l’entremise de ses temporalités. Nous déterminons les structures temporelles de plusieurs projets d’urbanisme, c’est-à-dire des représentations des temps des projets sous forme de découpages d’inspiration archéologique, généalogique et épistémologique. Cette analyse, issue de notre méthode d’appréhension du temps du projet, qui correspond à un projet défini comme processus, dans sa fonction de saisie d’une réalité donnée, mobilise deux notions. L’épaisseur temporelle est une image qui nuance la vision lissée du temps du projet : ce sont les temporalités du projet, actives ou inactives, qui s’ajoutent, apparaissent ou qui s’imbriquent. La transversalité temporelle est dépendante du contexte, et donc d’une analyse du parcours temporel du projet suivant les interactions entre projet et contexte. Plusieurs indicateurs de maturité du projet existent et marquent l’avancement du projet au fil du temps. / The main point of this research is to help to better understand the project through its temporalities. The temporal structure we determine is a visual representation of those temporalities, inspired by archaeological, genealogical and epistemological domains. This analysis, stemmed from a method fitting a (urban) project defined as a process based on a given reality, is guided by two notions. Temporal thickness is an image which is different from the usual linear and chronological perception of the temporal dimension of the project: it refers to the various active or inactive temporalities which appear, pile up or fit into each other. Temporal transversality mainly depends on context, and thus on an analysis of the progression of the project resulting from the interactions between project and context. Several indicators mark the gradual maturity of the project.
144

Interrupção das fibras brancas nos acessos cirúrgicos ao corno temporal do ventrículo lateral: estudo anatômico / White matter interruption in the surgical approaches to the temporal horn of the lateral ventricle

Paulo Abdo do Seixo Kadri 22 January 2016 (has links)
Introdução: A exploração cirúrgica do como temporal do ventrículo lateral (CTVL) é realizada para o tratamento de lesões neoplásica, vasculares e, principalmente, para o tratamento cirúrgico da epilepsia do lobo temporal. As abordagens cirúrgicas a esta cavidade são realizadas, a partir da superficie cortical e através de suas paredes, pelos acessos laterais, transsilvianos e inferiores. A escolha do acesso cirúrgico se baseia na exposição adequada e nas alterações neurológicas que possam advir do trauma ao parênquima cerebral. A secção dos diferentes feixes de fibras brancas pode resultar em déficits neurológicos mais duradouros do que a lesão ao córtex cerebral. Os déficits visuais oriundos da interrupção das fibras da radiação óptica são os mais estudados. A identificação das interrupções dos demais conjuntos de fibras e as correlações dos déficits neurológicos originados têm sido subestimadas na literatura Objetivo: Avaliar a interrupção dos feixes de fibras brancas nos diferentes acessos cirúrgicos ao como temporal do ventrículo lateral, utilizando a técnica de dissecção de fibras brancas de Klinger. Métodos: Para o estudo, foram utilizados 40 hemisférios cerebrais cadavéricos adultos (20 encéfalos) preparados no Laboratório de Anatomia da UFMS de acordo com a descrição do método de preparação de Klinger. As aberturas da cavidade ventricular, mimetizando os acessos cirúrgicos lateral (através do giro temporal médio), inferior (através do giro parahipocampal), transsilviano e transuncal foram realizados por meio de incisões de l5 mm a partir das superficies corticais. Resultados: A introdução dos instrumentos de dissecção, de 15 mm de largura por 2 mm de espessura, garantiu a uniformidade das transecções das fibras da superficie cortical à cavidade ventricular. Como resultado obteve­se o acesso que causou menor comprometimento de fibras brancas foi o acesso transucal, esse que atingiu apenas 8,3% das fibras analisadas, sendo as fibras em \"U\" situadas no córtex piriforme. Em seguida, os acessos inferior e transsilviano causaram lesões em 25% das fibras brancas. O acesso que acometeu o maior número de fibras, sendo considerado o mais lesivo para a substância branca foi o acesso lateral, esse que acometeu 75% das fibras analisadas durante a pesquisa. Conclusão: O acesso lateral através do giro temporal médio ocasiona lesões da porção inferior do fascículo longitudinal superior (segmento arqueado e vertical), do fascículo uncinado (segmento dorso lateral da porção temporal), do fascículo occipitofrontal (segmento ventral da porção posterior), da comissura anterior (segmento posterior da extensão lateral), das fibras temporopontinas, do pedúnculo talârnico posterior (alça temporal), do pedúnculo talâmico inferior (fibras posteriores) e do tapete. O acesso transsilviano ocasiona lesões do fascículo uncinado (segmento ventromedial da porção temporal), da comissura anterior (segmento anterior da extensão lateral) e da substância cinzenta da amígdala. O acesso inferior, através do giro parahipocampal, ocasiona lesões do segmento inferior do cíngulo e da formação hipocampal. O acesso transuncallesa apenas a substância cinzenta da amígdala . / Introduction: Surgical access to the temporal hom of lateral ventric1e is performed to treat tumoral and vascular lesions, but mainly to the surgi cal treatment of temporal epilepsy. The surgi cal exploration of this cavity is realized from the cortical surface towards the ventricular walls, through the lateral, transsylvian and inferior approaches, based on the adequate exposure of the cavity and on the postoperative deficits that might be originated from the brain parenchymal trauma. Lesions to the fibers bundles often result in more severe and prolonged deficits than corticallesions. The most common recognized deficits are the visual fields defects secondary to injuries to the optic radiation. Identification of the interruption of other fibers bundles involved and their correlated c1inical manifestation have been underestimated on the literature. Objective: To identify the interruption of the fiber bundles originated from the different approaches to the temporal hom utilizing the Klinger\'s fiber dissection technique. Methods: We studied 40 cerebral hemispheres of 20 brains, prepared according to Klingers method, at the UFMS Laboratory of Anatomy. The surgical access of the temporal hom was performed simulating the lateral (middle temporal gyrus), inferior (parahippocampal gyrus), transsylvian and transuncal approaches, through 15 mm cortical incisions, followed by stepwise dissection of the fibers. Results: Introduction ofthe dissector (15 mm width, 2 mm height) warranted an uniform transection of the fibers from the cortical surface to the ventricular cavity. The least destructive access encountered was the transuncal access, interrupting 8,3% of the studied fibers. Following it, the inferior and the transsylvian approaches interrupted 25% of the fibers. The most destructive, interrupting 75% of the studied fibers was the lateral approach. Conclusion: The lateral approach through the middle temporal gyrus caused interruptions on the inferior portion (vertical and arcuate segments) of the superior longitudinal fasciculus; on the dorso lateral segment of the temporal portion from the uncinate fasciculus; on the ventral segment of the posterior portion from the occipitofrontal fasciculus; on the posterior segrnent of the lateral extension from the posterior commissure; on the temporopontine fibers; on the anterior loop of the posterior thalamic pedunc1e, on the posterior fibers of the inferior thalamic pedunc1e and the tapetum fibers. The transsylvian approach caused interruptions on the ventromedial segrnent of the temporal portion from the uncinate fasciculus; on the anterior segrnent of the lateral extension from the anterior commissure and transected the amygdala on its anterosuperior surface. The inferior approach through the parahippocampal gyrus caused interruptions on the inferior segment of the cingulum and on the fimbria, due to the transection of the hipocampal formation. The transuncal approach only transected the amygdala
145

Efficient Temporal Reasoning with Uncertainty

Nilsson, Mikael January 2015 (has links)
Automated Planning is an active area within Artificial Intelligence. With the help of computers we can quickly find good plans in complicated problem domains, such as planning for search and rescue after a natural disaster. When planning in realistic domains the exact duration of an action generally cannot be predicted in advance. Temporal planning therefore tends to use upper bounds on durations, with the explicit or implicit assumption that if an action happens to be executed more quickly, the plan will still succeed. However, this assumption is often false. If we finish cooking too early, the dinner will be cold before everyone is at home and can eat. Simple Temporal Networks with Uncertainty (STNUs) allow us to model such situations. An STNU-based planner must verify that the temporal problems it generates are executable, which is captured by the property of dynamic controllability (DC). If a plan is not dynamically controllable, adding actions cannot restore controllability. Therefore a planner should verify after each action addition whether the plan remains DC, and if not, backtrack. Verifying dynamic controllability of a full STNU is computationally intensive. Therefore, incremental DC verification algorithms are needed. We start by discussing two existing algorithms relevant to the thesis. These are the very first DC verification algorithm called MMV (by Morris, Muscettola and Vidal) and the incremental DC verification algorithm called FastIDC, which is based on MMV. We then show that FastIDC is not sound, sometimes labeling networks as dynamically controllable when they are not.  We analyze the algorithm to pinpoint the cause and show how the algorithm can be modified to correctly and efficiently detect uncontrollable networks. In the next part we use insights from this work to re-analyze the MMV algorithm. This algorithm is pseudo-polynomial and was later subsumed by first an n5 algorithm and then an n4 algorithm. We show that the basic techniques used by MMV can in fact be used to create an n4 algorithm for verifying dynamic controllability, with a new termination criterion based on a deeper analysis of MMV. This means that there is now a comparatively easy way of implementing a highly efficient dynamic controllability verification algorithm. From a theoretical viewpoint, understanding MMV is important since it acts as a building block for all subsequent algorithms that verify dynamic controllability. In our analysis we also discuss a change in MMV which reduces the amount of regression needed in the network substantially. In the final part of the thesis we show that the FastIDC method can result in traversing part of a temporal network multiple times, with constraints slowly tightening towards their final values.  As a result of our analysis we then present a new algorithm with an improved traversal strategy that avoids this behavior.  The new algorithm, EfficientIDC, has a time complexity which is lower than that of FastIDC. We prove that it is sound and complete.
146

Composing over time, temporal patterns : in Textile Design

Jansen, Barbara January 2015 (has links)
The work presented in this thesis investigates through practice a new field of textile design exploring the visual effects of moving light as a continuous time-based medium. Thereby, the textile design pattern reveals its composition, not in one moment of time any more, but in fact over time. The thesis consist of four parts: a solo exhibition at the Textile Museum in Borås from 17th February- 28th March 2015, five posters, an interactive thesis including 48 films (download file) and present thesis book. The artefacts displayed in the thesis show a varying range of examples which explore aesthetical possibilities of how light can be integrated as an active part into textile structures, ranging from weaving to braiding techniques, both hand crafted, as well as industrial produced. Thereby three main groups of experiments: colour flow, rhythm exercise, sound_light experiment explore and discuss a range of different time-based expressions. Thus define and establish relevant new design variables and notions, whilst working with time-based design processes. In the following descriptions of these experiments two forms of writing have been used to describe the experiments. One is purely descriptive, neutral form to describe the experiments as such, whereas text titled Research Diary Notes includes reflections and personal comments on the experiences during work on the experiments. The interactive thesis and the exhibited artefacts are an invitation to view new textiles expressions and are an initial guide on the road toward future time-based design works, particularly in the area of light emitting textiles. / <p>Disputationen sker den 17:e mars 2015, kl. 10-12 i Textilmuséet, Textilhögskolan, Skaraborgsvägen 3, Borås. Opponent: Dr Nithikul Nimkulrat, Professor i textildesign, Head of Department of Textile Design, Estonian Academy of Arts.</p><p></p><p>Disputationen genomförs på engelska.</p>
147

Understanding the mechanisms of dissolved oxygen trends and variability in the ocean

Takano, Yohei 27 May 2016 (has links)
A widely observed tracer in the field of oceanography is dissolved oxygen (O2). A tracer crucial to ocean biogeochemical cycles, O2 plays an active role in chemical processes, marine life, and ecosystems. Recent advances in observation and numerical simulation have introduced opportunities for furthering our understanding of the variability and long-term changes in oceanic O2. This work examines the underlying mechanisms driving O2 variability and long-term changes. It focuses on two distinct time-scales: intra-seasonal variability (i.e., a time scale of less than a month) and centennial changes in O2. The first half of this work analyzes state-of-the-art observations from a profiling float in an investigation of the mechanisms driving the intra-seasonal variability of oceanic O2. Observations from the float show enhanced intra-seasonal variability (i.e., a time scale of about two weeks) that could be driven by isopycnal heaving resulting from internal waves or tidal processes. Observed signals could result from aliased signals from internal waves or tides and should be taken into account in analyses of the growing observational dataset. The methods proposed in this study may be useful for future analyses of high-frequency tracer variability associated with mesoscale and sub-mesoscale processes. Using outputs from state-of-the-art earth system models and a suite of sensitivity experiments based on a general circulation and biogeochemistry ocean model, the second half of this work focuses on investigating mechanisms regulating centennial changes in O2. It explores the aspect of anthropogenic climate change (e.g., changes in the sea surface temperature and wind stress fields) that significantly impacts oceanic O2, focusing specifically on tropical oxygen minimum zones. Results suggest that ocean heating induces a water mass shift, leads to decrease apparent oxygen utilization (AOU) in the tropical thermocline. The AOU decrease compensates the effect of decrease in oxygen saturation due to the ocean warming. Our sensitivity experiments show that both physically (i.e., age) and biologically (i.e., the oxygen utilization rate) driven AOU will contribute almost equally to controlling changes in oceanic O2 in the next century. However, additional sensitivity experiments indicate that physically and biologically driven AOU balance has regional characteristics. We need to address the unanswered question of how varying large-scale oceanic circulations regulate this balance and answer fundamental questions that lead to a more comprehensive understanding of the mechanisms that control the variability and the future evolution of oceanic O2.
148

White Matter Correlates of Verbal Memory in Left Temporal Lobe Epilepsy: A Study of Structural Connectivity

Brewster, Ryan 12 August 2016 (has links)
Verbal memory deficits are among the most prominent cognitive sequelae in individuals with left temporal lobe epilepsy (LTLE). However, relationships between verbal memory function and white matter integrity (WMI) in the left temporal lobe remain unclear. Current study aims included determining fractional anisotropy (FA) and mean diffusivity (MD) differences as an index of WMI between participants with left temporal lobe epilepsy (LTLE), participants with right TLE (RTLE), and controls, establishing group differences based on verbal memory function between TLE groups, and describing relationships between WMI and verbal memory function within TLE groups. Probabilistic tractography defined the left fornix (FRX), left uncinate fasciculus (UF), left parahippocampal cingulum (PHC), and a control region, the left corticospinal tract (CST), in 26 LTLE, 29 RTLE, and 20 control participants. The LTLE group demonstrated significantly lower fractional anisotropy (FA) along the PHC compared with controls. LTLE and RTLE groups did not differ significantly on measures of verbal memory until analyses were restricted to participants with left-lateralized language functioning. PHC FA was negatively correlated with semantic memory function in LTLE, but positively associated with episodic memory functioning in RTLE. Overall, findings highlight the PHC as vulnerable in LTLE, and differentially related to verbal memory functioning based on TLE group. Both findings are likely secondary to left-lateralized white matter disruption in LTLE. The current study also highlighted the importance of identifying homogenous groups to more clearly identify brain-behavior relationships. Current findings further define left-lateralized white matter alternations and related verbal memory deficits in TLE. Implications for these findings are presented in context with previous TLE literature, and future directions for further study are discussed.
149

The Effects of Synchronous Versus Asynchronous Temporal Patterns On Sequential Learning

Ross, Kimberly 12 August 2016 (has links)
Sequential learning refers to the ability to learn the temporal and ordinal patterns of one’s environment. The current study examines the effects of synchronous and asynchronous temporal patterns on sequential learning. Twenty healthy adults participants (11 females, 18–34 years old) performed two versions of a visual sequential learning paradigm while event-related potentials (ERPs) were recorded. Reaction times to the targets following two predictor types were also recorded. Reaction time data revealed that learning occurred in both temporal conditions, although overall the synchronous condition was responded to faster. On the other hand, the mean ERP amplitudes between 300 and 700ms post-predictor onset revealed an interaction between timing condition and predictability in the posterior regions of interest. Specifically, the ERP results indicated that learning of the statistical contingencies between items was more pronounced for the synchronous temporal condition compared to the asynchronous condition.
150

Χρονικά γραφήματα / Temporal graphs

Ακρίδα, Ελένη 04 September 2013 (has links)
Στη διπλωματική εργασία προς παρουσίαση, πραγματευόμαστε ένα νέο είδος γραφημάτων, τα χρονικά γραφήματα, και διάφορες παραλλαγές τους. Ένα χρονικό γράφημα είναι μια διατεταγμενη τριάδα G={V,E,L}, όπου V ένα μη κενό πεπερασμένο σύνολο που καλείται σύνολο κορυφών, E ένα σύνολο m στοιχείων, καθένα από τα οποία είναι δισύνολο στοιχείων του V (καλείται σύνολο ακμών), και L= {L_e, για κάθε e στοιχείο του E} = {L_e_1, L_e_2, ..., L_e_m}, όπου L_e_i, i = 1,..., m, σύνολο θετικών ακεραίων τιμών που αντιστοιχίζονται στην ακμή e_i του συνόλου E (καλείται ανάθεση χρονικών ετικετών ή απλώς ανάθεση). Οι τιμές που αντιστοιχίζονται σε κάθε ακμή του γραφήματος καλούνται χρονικές ετικέτες της ακμής και δηλώνουν τις χρονικές στιγμές, κατά τις οποίες έχουμε τη δυνατότητα να τη διασχίσουμε (από το ένα της άκρο προς το άλλο). Για να αντιληφθεί κανείς το ενδιαφέρον των χρονικών γραφημάτων, μπορεί να σκεφτεί τη δυνατότητα εφαρμογής τους στην καθημερινότητα. Για παράδειγμα, οι χρονικές ετικέτες που ανατίθενται σε μία ακμή ενός κατευθυνόμενου χρονικού γραφήματος μπορούν να παραλληλιστούν με τις ώρες, στις οποίες γίνονται αναχωρήσεις αεροπλάνων από μία πόλη προς μια άλλη. Έτσι, η μελέτη των χρονικών γραφημάτων θα μπορούσε να συμβάλει στην οργάνωση των πτήσεων ενός αεροδρομίου. Ένα χρονικό μονοπάτι (ή «ταξίδι») σε ένα χρονικό γράφημα είναι ένα μονοπάτι, στις ακμές του οποίου μπορούμε να βρούμε αυστηρά αύξουσα σειρά χρονικών ετικετών. Στην εργασία, μεταξύ άλλων, γίνεται μελέτη της συνδετικότητας στα χρονικά γραφήματα, καθώς και κατασκευή και μελέτη αλγορίθμων εύρεσης χρονικών μονοπατιών («ταξιδίων») που φθάνουν το δυνατόν συντομότερα στον προορισμό τους (τελική κορυφή μονοπατιού). Επιπλέον, μελετώνται στατιστικά τα Χρονικά Γραφήματα, με επικέντρωση στο αναμενόμενο πλήθος χρονικών μονοπατιών σε ένα γράφημα, καθώς και στη Χρονική Διάμετρο ενός γραφήματος, όπως αυτή ορίζεται στην εργασία. / In the thesis, we are dealing with a new type of graphs,called Temporal Graphs, and several variants. A temporal graph is an ordered triplet G={V,E,L}, where V stands for a nonempty finite set (called set of vertices), E stands for a set of m elements, each of which are 2-element subsets of V (called set of edges), and L= {L_e, for all e in E} = {L_e_1, L_e_2, ..., L_e_m}, where L_e_i, i = 1, ..., m, is a set of positive integers mapped to edge e_i in E (called assignment of time labels or simply assignment). The values assigned to each edge of the graph are called time labels of the edge and indicate the times at which we can cross it (from one end to the other). In order to understand the interest of temporal graphs, one may think their applicability to everyday life. For example, the time labels assigned to an edge of a directed temporal graph can be paralleled to the flight departure times from one city to another. Therefore, the study of temporal graphs could contribute to the organization of flights at an airport. A temporal path (or «journey») in a temporal graph is a path, on the edges of which we can find strictly ascending time labels. In the thesis, among others, we study the connectivity of temporal graphs and we construct and study several algorithms that find temporal paths which arrive the soonest possible at their destination (final vertice of the path). Furthermore, we examine temporal graphs statistically, focusing on the expected number of temporal paths in a graph as well as in the Temporal Diameter of a graph, also defined in the thesis.

Page generated in 0.0501 seconds