Spelling suggestions: "subject:"venue een température"" "subject:"venue enn température""
1 |
Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS / Fabrication of porous semicondutors for improved thermal insulation in MEMSNewby, Pascal 12 December 2013 (has links)
L'isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Selon le type de dispositif, l'isolation permet de réduire la consommation d'énergie, diminuer le temps de réponse, ou augmenter sa sensibilité. Les matériaux d'isolation thermique actuellement disponibles sont difficiles à intégrer en couche épaisse dans des dispositifs en silicium. À cause de cela, l'approche la plus utilisée pour l'isolation est d'intégrer les zones à isoler sur des membranes minces (~ 1 µm). Cela assure une bonne isolation, mais est restrictif pour la conception du dispositif et la fragilité des membranes complique la fabrication et l'utilisation de celui-ci. Le silicium poreux est facile à intégrer puisqu'il est fabriqué par gravure électrochimique de substrats de Si cristallin. On peut aisément fabriquer des couches épaisses (100 µm) et sa conductivité thermique est 2-3 ordres de grandeur plus faible que celle du Si massif. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d'intégration des semiconducteurs poreux est un atout majeur, et nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. La première approche qui a été développée consiste à amorphiser le Si poreux en l'irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l'amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. On peut atteindre ainsi une réduction de conductivité thermique jusqu’à un facteur de trois. La seconde approche est de développer un nouveau matériau. Le SiC poreux a été choisi, puisque le SiC massif a des propriétés physiques exceptionnelles et supérieures à celles du silicium. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant, ce qui nous a permis de fabriquer des couches poreuses uniformes d’une épaisseur d’environ 100 µm. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l'avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nos résultats montrent que la conductivité thermique du SiC poreux est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication et est stable jusqu'à au moins 1000°C. / Thermal insulation is essential in several types of MEMS (Micro electro mechanical systems). Depending on the device, insulation can reduce the device’s power consumption, decrease its response time, or increase its sensitivity. Existing thermal insulation materials are difficult to integrate as thick layers in silicon-based devices. Because of this, the most commonly used approach is to integrate the areas requiring insulation on thin membranes. This provides effective insulation, but restricts the design of the device and the membrane’s fragility makes the device’s fabrication and use more complicated. Poreux silicon is easy to integrate as it is made by electrochemical etching of crystalline silicon substrates. 100 µm thick layers can easily be fabricated and its thermal conductivity is 2-3 orders of magnitude lower than that of bulk silicon. However, its porosity causes other problems : low chemical resistance, its structure is unstable above 400°C, and reduced mechanical stability. The ease of integration of porous semiconductors remains a major advantage, so we aim to reduce the disadvantages of these materials in order to help their integration in microfabricated devices. The first approach we developed was to amorphise porous Si by irradiating it with heavy ions. We have shown that amorphisation of porous Si, even partial, causes a reduction of its thermal conductivity without damaging its porous structure. In this way a reduction in thermal conductivity by up to a factor of three can be achieved. The second approach was to develop a new material. Porous SiC was chosen, as bulk SiC has exceptional physical properties which are superior to those of silicon. We carried out a systematic study of the porosification process of SiC versus HF concentration and current, which enabled us to make thick (100 µm) and uniform layers. We have implemented a system for measuring thermal conductivity using the “3 omega” technique and used it to measure the thermal conductivity of porous SiC. Our results show that the thermal conductivity of porous SiC is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is resistant to all chemical commonly used in microfabrication, and is stable up to at least 1000°C.
|
Page generated in 0.0456 seconds