Spelling suggestions: "subject:"deoria tilting"" "subject:"deoria wilting""
1 |
Categorias Cluster / Cluster CategoriesQueiroz, Dayane Andrade 30 January 2015 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2015-11-12T13:17:51Z
No. of bitstreams: 1
texto completo.pdf: 1082850 bytes, checksum: e652565e5953a1e93915f35cfdcaf7f4 (MD5) / Made available in DSpace on 2015-11-12T13:17:51Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1082850 bytes, checksum: e652565e5953a1e93915f35cfdcaf7f4 (MD5)
Previous issue date: 2015-01-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triangulada das categorias cluster. Este resultado foi generalizado mais tarde por Philippe Caldero e Bernhard Keller em [8] para quivers do tipo acíclico. O objetivo principal desta dissertação e estudar como a teoria tilting sobre cluster permite estabelecer a relação entre estas estruturas e apresentar exemplos. / In this work we present the cluster categories, which were introduced by Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten and Gordana Todorov, with objective of categoriíication cluster algebras created in 2002 by Sergey Fornin and Andrei Zelevinsky. The authors above, on [4], showed that there is a close relationship between cluster algebras and cluster categories for quivers whose un- derlying graph is a Dynkin diagrarn. For this they develOped a tilting theory in the triangulated structure of the cluster categories. This result was later generalized by Philippe Caldero and Bernhard Keller on [8] for quivers of the acyclic type. The main objective of this dissertation is to study how the tilting theory about cluster enables establish the relationship between these structures and present examples.
|
Page generated in 0.0442 seconds