• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo termodinâmico de sistemas quânticos caóticos via Teoria de Matrizes Aleatórias / Thermodynamic study of quantum chaotic system using Random Matrix Theory

Cavalcante, Eric Gomes Arrais 22 August 2016 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2016-09-27T18:02:45Z No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-28T12:29:27Z (GMT) No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-28T12:29:27Z (GMT). No. of bitstreams: 2 Dissertação - Eric Gomes Arrais Cavalcante - 2016.pdf: 2072393 bytes, checksum: c41dbeb585036af1c9bb4448250b6edd (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-08-22 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Results from classical Random Matrix Theory (RMT) are well recognized as a way to describe spectral statistical properties of classically chaotic quantum systems, such as the level spacing distribution. We investigate, both numerically and analytically, if RMT can be used, at least for some regimes, to predict the behavior of the statistics of work performed by quenching some external parameter dictating the dynamics of a quantum chaotic system. This is done by comparison of the characteristic function of work obtained numerically from a well known quantum chaotic system called Dicke Model and from matrices pertaining to one of the classical ensembles of RMT, namely GOE. We also show one analytical result for the RMT average of the characteristic function that holds in the limit of high temperatures. / É reconhecido que a teoria de matrizes aleatórias (RMT) é capaz de descrever corretamente o comportamento de propriedades estatísticas espectrais de sistemas quânticos classicamente caóticos, como, por exemplo, suas distribuições de espaçamento de níveis. Investigamos, tanto numericamente quanto analiticamente, se a RMT pode ser usada, ao menos em alguns regimes, para predizer o comportamento da estatística do trabalho realizado ao se realizar um quench sobre um parâmetro externo que dita a dinâmica de um sistema quântico caótico. Isso é feito através da comparação da função característica do trabalho obtida numericamente a partir de um sistema quântico caótico bem conhecido, chamado modelo de Dicke, com a obtida a partir de matrizes pertencentes a um dos ensembles clássicos da RMT, chamado GOE. Mostramos também um resultado analítico para a média RMT da função característica que é válida para o limite de altas temperaturas.
2

Sobre a termodinâmica dos espectros / On the spectrum thermodynamic

Carnovali Junior, Edelver 18 April 2008 (has links)
Três ensembles, respectivamente relacionados com as distribuições Gaussiana, Lognormal e de Levy, são abordados neste trabalho primordialmente do ponto de vista da termodinâmica de seus espectros. Novas expressões para as grandezas termodinâmicas sao encontradas para os ensembles de Stieltjes e de Bertuola-Pato, e a conexão destes com os ensembles Gaussianos e estabelecida. Esta tese também se compromete com a continuação do desenvolvimento e aprimorarão do ensemble generalizado de Bertuola-Pato, estendendo alguns resultados para os ensembles simplifico e unitário generalizados, alem do ortogonal generalizado já introduzido anteriormente por A. C. Bertuola e M. P. Pato. / Three ensembles, related to the Gaussian, the Lognormal and the L´evy distributions respectively, have been studied in this work and were investigated most of all in what concerns their spectral thermodynamics. New expressions for the thermodynamics quantities were found for the Stieltjes and the Bertuola-Pato ensembles, and the connection with the gaussian ensembles is established. This work concerned with the development continuity and with the improvement of Bertuola-Pato generalized ensemble, extending some of the results to the simplectic and unitary generalized ensembles, besides the orthogonal generalized ensemble introduced before by A. C. Bertuola and M. P. Pato.
3

Quebras de simetria em sistemas aleatórios pseudo-hermitianos / Symmetry Breaking in Pseudo-Hermitian Random Systems

Santos, Gabriel Marinello de Souza 27 November 2018 (has links)
Simetrias compõe parte integral da análise na Teoria das Matrizes Aleatórias (RMT). As simetrias de inversão temporal e rotacional são aspectos-chave do Ensemble Gaussiano Ortogonal (GOE), enquanto esta última é quebrada no Ensemble Gaussiano Simplético (GSE) e ambas são quebradas no Conjunto Unitário Gaussiano (GUE). Desde o final da década de 1990, o crescente interesse no campo dos sistemas quânticos PT-simétricos levou os pesquisadores a considerar o efeito, em matrizes aleatórias, dessa classe de simetrias, bem como simetrias pseudo-hermitianas. A principal questão a ser respondida pela pesquisa apresentada nesta tese é se a simetria PT ou, de forma mais geral, a pseudo-Hermiticidade implica alguma distribuição de probabilidade específica para os autovalores. Ou, em outras palavras, se há um aspecto comum transmitido por tal simetria que pode ser usada para modelar alguma classe particular de sistemas físicos. A abordagem inicial considerada consistiu na introdução de um conjunto pseudo-hermitiano, isospectral ao conjunto -Hermite, que apresentaria o tipo de quebra de realidade típico dos sistemas PT-simétricos. Nesse modelo, a primeira abordagem adotada foi a introdução de perturbações que quebraram a realidade dos espectros. Os resultados obtidos permitem concluir que a transformação em seu similar pseudo-hermitiano conduz a um sistema assintoticamente instável. Esse modelo foi extendido ao considerar um pseudo-hermitiano não positivo, que leva a uma quebra similar na realidade dos espectros. Este caso apresenta um comportamento mais próximo do típico dos sistemas PT-simétricos presentes na literatura. Um modelo denso geral baseado em projetores foi proposto, e duas realizações particulares deste modelo receberam atenção mais detalhada. O comportamento espectral também foi similar àquele típico da simetria PT para as duas realizações consideradas, e seus limites assintóticos foram conectados a conjuntos clássicos de teoria de matriz aleatória. Além disso, as propriedades de seus polinômios característicos médios foram obtidas e os limites assintóticos desses polinômios também foram considerados e relacionados a polinômios clássicos. O comportamento estatístico deste conjunto foi estudado e comparado com o destes polinômios. Impor a pseudo-Hermiticidade não parece implicar qualquer distribuição particular de autovalores, sendo a característica comum a quebra da realidade dos autovalores comumente encontrados na literatura de simetria PT. O resultado mais notável dos estudos apresentados nesta tese é o fato de que uma interação pseudo-hermitiana pode ser construída de tal forma que o comportamento espectral médio possa ser controlado calibrando-se o mecanismo de interação, bem como sua intensidade. / The role of symmetries is an integral part of the analysis in Random Matrix Theory (RMT). Time reversal and rotational symmetries are key aspects of the Gaussian Orthogonal Ensemble (GOE), whereas the latter is broken in the Gaussian Sympletic Ensemble (GSE) and both are broken in the Gaussian Unitary Ensemble (GUE). Since the late 1990s, growing interest in the field of PT symmetric quantum systems has led researchers to consider the effect, in random matrices, of this class of symmetries, as well as that of pseudo-Hermitian symmetries. The primary question to be answered by the research presented in this thesis is whether PT-symmetry or, more generally, pseudo-Hermiticity implies some specific probability distribution for the eigenvalues. Or, in other words, whether there is a common aspect imparted by such a symmetry which may be used to model some particular class of physical systems. The initial approach considered consisted of introducing an pseudo-Hermitian ensemble, isospectral to the -Hermite ensemble, which would present the type of reality-breaking typical of PT-symmetrical systems. In this model, the first approach taken was to introduce perturbation which broke the reality of the spectra. The results obtained allow the conclusion that the transformation into its pseudo-Hermitian similar leads into a system which is asymptotically unstable. An extension of this model was to consider a non-positive pseudo-Hermitian , which lead to similar breaking in the reality of the spectra. This case displays behavior closer to that typical of the PT-symmetric systems present in the literature. A general dense projector model was proposed, and two particular realizations of this model were given more detailed attention. The spectral behavior was also similar to that typical of PT-symmetry for the two realizations considered, and their asymptotic limits were shown to connect to classical ensembles of random matrix theory. Furthermore, the properties of their average characteristic polynomials were obtained and the asymptotic limits of these polynomials were also considered and were related to classical polynomials. The statistical behavior of this ensemble was studied and compared to that of these polynomials. Imposing the pseudo-Hermitian does seem not imply any particular eigenvalue distribution, the common feature being the breaking of the reality of the eigenvalues commonly found in PT-symmetry literature. The most notable result of the studies presented herein is the fact that a pseudo-Hermitian interaction may be constructed such that the average spectral behavior may be controlled by calibrating the mechanism of interaction as well as its intensity.
4

Sobre a termodinâmica dos espectros / On the spectrum thermodynamic

Edelver Carnovali Junior 18 April 2008 (has links)
Três ensembles, respectivamente relacionados com as distribuições Gaussiana, Lognormal e de Levy, são abordados neste trabalho primordialmente do ponto de vista da termodinâmica de seus espectros. Novas expressões para as grandezas termodinâmicas sao encontradas para os ensembles de Stieltjes e de Bertuola-Pato, e a conexão destes com os ensembles Gaussianos e estabelecida. Esta tese também se compromete com a continuação do desenvolvimento e aprimorarão do ensemble generalizado de Bertuola-Pato, estendendo alguns resultados para os ensembles simplifico e unitário generalizados, alem do ortogonal generalizado já introduzido anteriormente por A. C. Bertuola e M. P. Pato. / Three ensembles, related to the Gaussian, the Lognormal and the L´evy distributions respectively, have been studied in this work and were investigated most of all in what concerns their spectral thermodynamics. New expressions for the thermodynamics quantities were found for the Stieltjes and the Bertuola-Pato ensembles, and the connection with the gaussian ensembles is established. This work concerned with the development continuity and with the improvement of Bertuola-Pato generalized ensemble, extending some of the results to the simplectic and unitary generalized ensembles, besides the orthogonal generalized ensemble introduced before by A. C. Bertuola and M. P. Pato.
5

Transporte em nanoestruturas: métodos de movimento Browniano e teoria de circuitos

Fernandes de Macedo Júnior, Ailton January 2006 (has links)
Made available in DSpace on 2014-06-12T18:04:23Z (GMT). No. of bitstreams: 2 arquivo7752_1.pdf: 2968182 bytes, checksum: b99b78d01729ac83718a680337a6d7f1 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Faculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Os resultados apresentados nesta tese podem ser divididos em duas partes. Na primeira estudamos uma classe de ensembles de movimento browniano (EMB) da teoria de matrizes aleatórias, gerados a partir da teoria matricial de processos estocásticos markovianos. Os ensembles são caracterizados por uma equação de Fokker-Planck e estão intimamente relacionados a hamiltonianos de sistemas quânticos do tipo Calogero-Sutherland. Esta conexão leva a um esquema geral de classificação baseada numa recente generalização multidimensional dos polinômios ortogonais clássicos. Mostramos que, sob certas condições, os EMB englobam os ensembles de matrizes de transferência. Desta forma, desenvolvemos um tratamento unificado dos ensembles de polinômios e de matrizes de transferência que, além de servir como um esquema de classificação das diversas classes de simetria, fornece técnicas eficientes de cálculo. Desenvolvemos métodos de Fokker-Planck para o cálculo de médias de observáveis representados por estatísticas lineares, assim como para o cálculo de funções de correlação. Neste contexto, desenvolvemos um método de transformada integral e uma generalização do método das funções biortogonais para o cálculo da função de correlação de n-pontos. Os resultados deduzidos neste contexto geral são aplicados a pontos e fios quânticos. Em particular, apresentamos um estudo numérico de propriedades de transporte em pontos quânticos com simetria quiral. Na segunda parte, estudamos uma cavidade caótica balística acoplada, via barreiras de transparência arbitrária, a dois guias semi-infinitos usando as duas abordagens de teoria de circuito disponíveis na literatura: a escalar e a matricial. Mostramos a equivalência destas teorias através do cálculo dos cumulantes da estatística de contagem. Para isso, determinamos as funções geratrizes fornecidas pelas duas teorias e verificamos a concordância dos 18 primeiros cumulantes usando um programa de computação algébrica. Também estudamos distribuições exatas de corrente de alguns sistemas simples de dois terminais, como um ponto quântico com barreiras simétricas. Estes resultados são importantes, pois fornecem uma grandeza diretamente mensurável em experimentos
6

Matrizes aleatórias no ensemble / Random matrices in the B Ensemble

Santos, Gabriel Marinello de Souza 14 August 2014 (has links)
O estudo de matrizes aleatórias na física tradicionalmente ocorre no contexto dos modelos de Wigner e na estatística por modelos de Wishart, que se conectam através do threefold way de Dyson para matrizes aleatórias reais, complexas e de quaternios indexadas respectivamente pelo índice B = 1; 2; 4 de Dyson. Estudos recentes mostraram o caminho para que estes modelos fossem generalizados para valores reais de B, permitindo o estudo de ensembles com índice arbitrário. Neste trabalho, estudamos as propriedades estatísticas destes sistemas e exploramos a física subjacente nos modelos de Wigner e Wishart e investigamos, através de cálculos numéricos, os efeitos de localização nos modelos de geral. Também introduzimos quebras na simetria desta nova forma e estudamos numericamente os resultados da estatística dos sistemas perturbados. / The study of random matrices in physics has traditionally occurred in the context of Wigner models and in statistics by Wishart models, which are connected through Dyson\'s threefold way for real, complex and quaternion random matrices index by the Dyson _ = 1; 2; 4 index, respectively. Recent studies have shown the way by which these models are generalized for real values of _, allowing for the study the ensembles with arbitrary index. In this work, we study the statistical properties of these systems and explore the underlying physics in Wigner\'s and Wishart\'s models through and investigate through numerical calculations the e_ects of localization in general _ models. We also introduce symmetry breaks in this new form and study numerically the results of the statistics of the disturbed systems.
7

Flutuações universais da condutância de Spin-Hall em uma cavidade caótica de Dirac

VASCONCELOS, Thiago Conrado de 22 February 2016 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2017-02-07T13:36:07Z No. of bitstreams: 1 Thiago Conrado de Vasconcelos.pdf: 4646767 bytes, checksum: 61c228fc4590858e8ee056ac3909187e (MD5) / Made available in DSpace on 2017-02-07T13:36:07Z (GMT). No. of bitstreams: 1 Thiago Conrado de Vasconcelos.pdf: 4646767 bytes, checksum: 61c228fc4590858e8ee056ac3909187e (MD5) Previous issue date: 2016-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Throughout the latest years, the interest on Spintronics has increased. The principal purposes of the eld are to detect, manipulate, create and polarize spin currents. Within this topic, it is possible to emphasize the Spin Hall E ect(SEH) and the Inverse Spin Hall E ect(ISEH). In this dissertation, we analytically investigate the universal fluctuation of the conductance of the spin in a chaotic quantum point with chiral symmetry at low temperatures. We used random matrices theory and the expansion of the diagrammatic method for that purpose. We showed that when the chirality is broken, the universal fluctuation of the conductance dispersion is in the order of rms hGf sHi 0:18e=4 and that when there is the preservation of the chiral symmetry, the universal fluctuation of the conductance dispersion occurs in the order of rms [GqsH] 0:283e=4 which coincides with the literature. We also worked on ISEH, through the analytical analysis with the semi-classic expansion of the conductance and showed that in the semi-classic limit the relation rms [GqsH] = p2 rms hGf sHi is valid. / Ao longo dos últimos anos tem aumentado o interesse pelo estudo da spintrônica. O objetivo principal deste campo é detectar, manipular, criar e polarizar correntes de spin. Dentro deste tópico, se destaca o Efeito Hall (SHE) de Spin e Efeito Hall de Spin Inverso (ISHE). Neste trabalho investigamos analiticamente a flutuação universal da condutância de spin num ponto quântico caótico com simetria quiral a baixas temperaturas. Para isso, utilizamos a teoria de matrizes aleatória e a expansão do método diagramático. Mostramos que, quando a simetria de quiralidade é quebrada, a flutuação universal da condutância tem uma dispersão na ordem de na ordem de rms[GfsH] p2 0:18 e/4 e que, quando a simetria de quiralidade é preservada, a flutuação universal da condutância ocorre na ordem de rms[GqsH] 0.283 e/4 , o que está de acordo com a literatura. Em nosso trabalho também investigamos o (ISHE), por meio de uma análise analítica utilizamos a expansão semi-clássica da condutância e mostramos que no limite semi-clássico vale a relação rms[GqIsH] = p2 rms[GfIsH].
8

Matrizes aleatórias no ensemble / Random matrices in the B Ensemble

Gabriel Marinello de Souza Santos 14 August 2014 (has links)
O estudo de matrizes aleatórias na física tradicionalmente ocorre no contexto dos modelos de Wigner e na estatística por modelos de Wishart, que se conectam através do threefold way de Dyson para matrizes aleatórias reais, complexas e de quaternios indexadas respectivamente pelo índice B = 1; 2; 4 de Dyson. Estudos recentes mostraram o caminho para que estes modelos fossem generalizados para valores reais de B, permitindo o estudo de ensembles com índice arbitrário. Neste trabalho, estudamos as propriedades estatísticas destes sistemas e exploramos a física subjacente nos modelos de Wigner e Wishart e investigamos, através de cálculos numéricos, os efeitos de localização nos modelos de geral. Também introduzimos quebras na simetria desta nova forma e estudamos numericamente os resultados da estatística dos sistemas perturbados. / The study of random matrices in physics has traditionally occurred in the context of Wigner models and in statistics by Wishart models, which are connected through Dyson\'s threefold way for real, complex and quaternion random matrices index by the Dyson _ = 1; 2; 4 index, respectively. Recent studies have shown the way by which these models are generalized for real values of _, allowing for the study the ensembles with arbitrary index. In this work, we study the statistical properties of these systems and explore the underlying physics in Wigner\'s and Wishart\'s models through and investigate through numerical calculations the e_ects of localization in general _ models. We also introduce symmetry breaks in this new form and study numerically the results of the statistics of the disturbed systems.

Page generated in 0.066 seconds