• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 14
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a thick-film magnetostrictive material : formulation and characterisation

Grabham, Neil Jonathan January 2002 (has links)
No description available.
2

A study of the relationship between the magnetoelastic properties and microstructure of rare earth/iron compounds of the type Tb/Dy Fe←2

Janio, Anthony L. January 1989 (has links)
No description available.
3

Investigating Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Beams using Embedded Terfenol-D Particle Sensors

Rudd, Jonathan D 13 December 2014 (has links)
Reinforced fiber polymer composites are a class of materials that are composed of multiple constituents that work together to create a material specific for applications. By combining different fibers and matricies, laminates can be created that meet demands for high specific stiffness, damping specifications, and electrical resistance. However, their internal complexity subjects them to a number of internal failure modes that have the potential to fail the laminate. Those failure mechanisms are fiber breaking, microcracking in the matrix, debonding of the fibers from matrix, and delamination of ply layers. To assess these failures, nondestructive evaluation methods have been developed to detect internal damage before catastrophic failure occurs. This dissertation investigates an in-situ magnetostrictive based nondestructive method for monitoring delaminations in carbon fiber reinforced polymer laminates by using embedded Terfenol-D particles. The objective is to characterize how laminate ply count and delamination presence affect sensing through the mechanical and magnetic parameters that influence the induced voltage or sensing signal. In addition, the effect of magnetostriction on the formation and propagation of cracks on the sensor boundaries are also investigated. Methods used to characterize this behavior involve experimental testing, analytical, and numerical modeling. From the results, a threedimensional finite element analysis model reveals how the sensor interacts mechanically with the host structure through lower stresses in the delaminated region due to the absence of adhesive forces. The stress variation results in a local magnetic permeability change which influences the induced voltage. The experimental nondestructive testing show that the key parameter influencing the sensing signal for this setup was the particle density, which is controlled by fabrication process. An attempt to analytically model the experimental sensing signal with a first order differential equation using a multi-step process was successful, but there is poor correlation with the experimental results. Finally, analytical mechanics are developed to evaluate the interlaminar failure under a magnetostrictive stress of 55MPa, and was found to not cause interlaminar failure or delamination propagation in Section-A.
4

Impact dynamics of magnetorheological fluid saturated Kevlar and magnetostrictive composite coated kevlar

Son, Kwon Joong 23 October 2009 (has links)
High strength, light weight and flexibility have made fabrics the preferred material for personal body armor and other impact protection applications such as passenger airbags, turbine blade containment systems, military and motorcycle helmets, and space debris shields. Recently, a shear thickening fluid has been used to treat a Kevlar fabric for an additional enhancement to the ballistic resistance of the neat fabric. Motivated by this technique of dissipation augmentation to high strength fabrics, this research aims at investigating the incorporation of other energy-dissipative materials into high strength fabrics. Specifically, two magnetic field-responsive materials (a magnetorheological fluid and Terfenol-D) have been used as a dissipation augmentation of Kevlar fabrics. No previous work has reported either experimental or computational research on the impact dynamics of Kevlar fabric treated with magnetorheological fluids or magnetostrictive solids. This research has investigated both computational modeling and experimental evaluation of the impact dynamics of textile composite armor, treated with magnetic field-responsive materials. Fragment simulating projectile impact tests have been conducted for the fabricated composite targets under an applied magnetic field. A computational model based on a hybrid particle-element method has been developed, to simulate the impact dynamics of composite fabric targets embodying magnetorheological fluids. This model is a mesoscale multiphysics model which can simulate impact dynamics including complex magneto-thermo-mechanical coupling effects as well as interactions among a projectile, fabric yarns, and magnetorheological fluid particles. Computer simulations have been performed to validate the hybrid particle-element method against experimental results. The computational method developed in this research has shown good agreement with the experimental data, in terms of the ballistic limit and residual velocity of a striking projectile. As fabric impact protection systems become more complex, and more expensive materials are introduced, computation may play a more important role in design. Therefore, the hybrid particle-element model in this dissertation may contribute to the improvement of the computational capability for virtual prototyping of fabric-interstitial fluid composites. / text
5

Pulsed Laser Deposition of Thin Film Heterostructures

Garza, Ezra 04 August 2011 (has links)
Thin films of Strontium Ruthenate have been grown on Strontium Titanate and Lanthanum Aluminate (100) substrates by pulsed laser deposition. X-ray diffraction results show that the films grown on the Strontium Titanate are amorphous and polycrystalline on the Lanthanum Aluminate. Resistances versus temperature measurements show that the films exhibit semiconducting characteristics. In addition to the growth of Strontium Ruthenate thin films, multilayer heterostructures of Terfenol-D thin films on polycrystalline Lead Titanate thin films were grown by pulsed laser deposition. By using a novel experimental technique called magnetic field assisted piezoelectric force microscopy it is possible to investigate the magnetoelectric coupling between the electrostrictive Lead Titanate and magnetostrictive Terfenol-D thin film. Upon examination of the produced thin films the phase and amplitude components of the piezoelectric signal experience changes in response to an applied in-plane magnetic field. These changes provide experimental evidence of a magnetoelectric coupling between the Terfenol-D and Lead Titanate layers.
6

Modelling and design approaches of magnetostrictive actuators

Oscarsson, Mattias January 2007 (has links)
<p>A magnetostrictive material elongates when it is subjected to a magnetic field. This effect can then be used to design powerful actuators. The department of electromagnetic engineering has been working with magnetostricitve material and their applications since the 1980s and is presently engaged in a project focusing on magnetostrictive transducer utilisation for the aeronautic field.</p><p>The focus of the presented work has been to develop and improve methods and tools supporting the development of magnetostrictive actuators.</p><p>The axial-radial model was previously developed at the department and is well suited for circular cross sections of magnetostrictive rods. It is, however, common to laminate the magnetostrictive rods resulting in rectangular cross sections. The use of Cauer circuits allows modelling of the shielding effect. This shielding effect results in non-homogenous magnetisation and stress in both rectangular and circular cross sections of the rod. A model based on Cauer circuits, including a hysteresis model based on experimental data, was developed during the project. Furthermore, it is demonstrated how figures of merit and the use of finite element methods can be used to find optimised designs in a systematic and computational efficient way. The<i> modified generalised Fabry factor</i> <i>and the magnetisation inhomogeneity coefficient</i> are two proposed new figures of merit.</p><p>A Magnetostricitve material is characterised through an experimental procedure. Usually, magnetostrictive material exhibit large hysteresis. An important part of the material characterisation is the post-processing of the measurement data, including a de-hysterisation procedure. In the thesis, a de-hysterisation method which ensures energy consistent data is presented. Energy consistent material data is essential to achieve energy consistent simulations of magnetostrictive systems.</p><p>It is also demonstrated how the knowledge at the department can be utilised in international projects. In an ongoing project, the department is engaged in two sub tasks. In one of these sub tasks a high torque actuator is to be developed for the helicopter industry. The developed magnetostrictive models are used to perform system simulations of such actuator systems. In the other sub task a device for power harvesting from vibrations is analysed. It has now been shown how to adapt the load impedance in order to extract maximal electric power from the device.</p>
7

Nonlinear Control of Plate Vibrations

Ashour, Osama Naim 06 March 2001 (has links)
A nonlinear active vibration absorber to control the vibrations of plates is investigated. The absorber is based on the saturation phenomenon associated with dynamical systems with quadratic nonlinearities and a two-to-one internal resonance. The technique is implemented by coupling a second-order controller with the plate's response through a sensor and an actuator. Energy is exchanged between the primary structure and the controller and, near resonance, the plate's response saturates to a small value. Numerical as well as experimental results are presented for a cantilever rectangular plate. For numerical studies, finite-element methods as well as modal analysis are implemented. The commercially available software ABAQUS is used in the finite-element analysis together with a user-provided subroutine to model the controller. For the experimental studies, the plate is excited using a dynamic shaker. Strain gages are used as sensors, while piezoelectric ceramic patches are used as actuators. The control technique is implemented using a dSPACE digital signal processing board and a modeling software (SIMULINK). Both numerical and experimental results show that the control strategy is very efficient. A numerical study is conducted to optimize the location of the actuators on the structure to maximize its controllability. In this regard, the control gain is maximized for the PZT actuators. Furthermore, a more general method is introduced that is based on a global measure of controllability for linear systems. Finally, the control strategy is made adaptive by incorporating an efficient frequency-measurement technique. This is validated by successfully testing the control strategy for a non-conventional problem, where nonlinear effects hinder the application of the non-adaptive controller. / Ph. D.
8

Techniques for Controlling Structural Vibrations

Oueini, Shafic Sami 24 April 1999 (has links)
We tackle the problem of suppressing high-amplitude vibrations of cantilever beams when subjected to either primary external or principal parametric resonances. Guided by results of previous investigations into the nonlinear dynamics of single- and multi-degree-of-freedom structures, we design mechatronic systems of sensors, actuators, and electronic devices and implement nonlinear active feedback control. In the case of external excitation, we devise two vibration absorbers based on either quadratic or cubic feedback. We conduct theoretical analyses and demonstrate that when a two-to-one (one-to-one) internal resonance condition is imposed between the plant and the quadratic (cubic) absorber, there exists a saturation phenomenon. When the plant is forced near its resonant frequency and the forcing amplitude exceeds a certain small threshold, the nonlinear coupling creates an energy-transfer mechanism that limits (saturates) the response of the plant. Our theoretical studies reveal that the cubic absorber creates regimes of high-amplitude quasiperiodic and chaotic responses, thereby limiting its utility. However, we show that superior results can be achieved when the natural frequency of the quadratic absorber is set equal to one-half the excitation frequency. Consequently, we apply the quadratic technique through a variety of linear and nonlinear actuators, sensors, and electronic devices. We design and build second-order analog circuits that emulate the quadratic absorber. Using a DC motor, piezoelectric ceramics, and Terfenol-D struts as actuators and potentiometers, strain gages, and accelerometers as sensors, we demonstrate successful single- and multi-mode vibration control. In order to realize a more versatile implementation of the control strategy, we resort to a digital signal processing (DSP) board. We compose a code in C and design a digital absorber by developing algorithms that, in addition to replacing the analog circuit, automatically detect the amplitude and frequency of oscillation of the plant and fine-tune the absorber parameters. We take advantage of the digital realization, implement a linear absorber, and compare the performance of the quadratic absorber with that of its linear counterpart. In the case of parametric excitation, we investigate two techniques. First, we explore application of the quadratic absorber. We prove theoretically and demonstrate experimentally that this control scheme is not reliable. Then, we propose an alternate approach. We devise a control law based on cubic velocity feedback. We conduct theoretical and experimental investigations and show that the latter strategy leads to effective vibration suppression and bifurcation control. / Ph. D.
9

A multi-coil magnetostrictive actuator: design, analysis, and experiment

Wilson, Thomas Lawler 30 March 2009 (has links)
This dissertation investigates a new design for a magnetostrictive actuator that employs individually controlled coils distributed axially along the magnetostrictive rod. As a quantitative goal, the objective is to show that the multi-coil actuator can operate effectively at frequencies as high as 10,000 Hz with 900 N force and 50 microns of displacement. Conventional, single coil actuators with the same parameters for force and displacement develop significant attenuation in their response at frequencies above the first longitudinal vibration resonance at about 2750 Hz. The goal of the research is to investigate whether multiple coils can effectively increase the frequency range a least four times the range of conventional magnetostrictive actuators. This document derives a new mathematical model of the actuator that represents the spatial distributions of magnetic field and vibration, devises a control design that takes advantage of the multiple inputs to control the displacement of the actuator while consuming minimum electrical power, and describes a prototype multi-coil actuator and experimental system developed to test the idea. The simulations of the multi-coil actuator and control design demonstrate successful transient operation of the actuator over the targeted frequency range with feasible levels of input power and current. Experimental tests of the design, although limited by a computer sampling rate less than 10,000 Hz, are able to validate the predictions of the developed model of the actuator and reproduce the simulated control performance within the constraints of the experimental system.
10

Magnetostrikční vibrační generátor / Magnetostriction vibration power generator

Šumpelová, Jana January 2017 (has links)
This thesis deals with the idea of energy harvesting from mechanical vibration. It describes the magnetostrictive principle as a possibility to obtain an electrical energy. It is about a generator made of a beam with Terfenol-D material and a coil. The model of this device is created in Matlab/Simulink and FEMM application. For various values of measured vibration, these methods are then compared. In FEMM, you can improve energy gain by modeling of various environmental conditions and with using of another materials (e.g. by adding of permanent magnets). The outcome of the this thesis expresses the ability to harvest the energy with designed magnetostrictive generator compared to the already created models of the piezoelectric and electromagnetic generator. Based on these results, it is possible to determine which generator is more suitable for particular application.

Page generated in 0.0412 seconds