Spelling suggestions: "subject:"test duu rapport dde resemblance"" "subject:"test duu rapport dee resemblance""
1 |
Détection automatique de cibles dans des fonds complexes. Pour des images ou séquences d'images / Automatical detection in complex backgroundThivin, Solenne 16 December 2015 (has links)
L'objectif principal de ces travaux de thèse a été la mise en place d'un algorithme de détection de cibles sous-résolues pour des images infra-rouges de ciel.Pour cela, nous avons d'abord cherché à modéliser les images réelles dont nous disposions. Après une étude de ces images, nous avons proposé plusieurs modèles gaussiens prenant en compte la covariance spatiale. Dans ces modèles, nous avons supposé que les images pouvaient être segmentées en zones stationnaires. Dans chaque zone, nous avons supposé une structure forte sur la matrice de covariance (comme les modèles auto-régressifs en deux dimensions par exemple).Il a ensuite fallu choisir entre ces modèles. Pour cela, nous avons appliqué une méthode de sélection de modèles par critère de vraisemblance pénalisée introduite par Birgé et Massart. Nous avons obtenu comme résultats théoriques une inégalité oracle qui a permis de démontrer les propriétés statistiques du modèle choisi. Une fois le modèle sélectionné, nous avons pu bâtir un test de détection. Nous nous sommes inspirés de la théorie de Neyman-Pearson et du test du rapport de vraisemblance généralisé. Notre contrainte principale a été le respect du taux de fausses alarmes par image. Pour le garantir, nous avons appris le comportement du test sur les images réelles pour en déduire le seuil à appliquer.~~Nous avons ensuite remarqué que le comportement de ce test variait fortement selon la texture de l'image : image de ciel bleu uniforme, image de nuage très texturé, etc. Après avoir caractérisé les différentes textures rencontrées avec les coefficients de scattering de Stéphane Mallat, nous avons décidé de classer ces textures. Le seuil appliqué lors de la détection a alors été adapté à la texture locale du fond. Nous avons finalement mesuré les performances de cet algorithme sur des images réelles et nous les avons comparées à d'autres méthodes de détection.Mots-clés: Détection, Covariance spatiale, Sélection de modèles, Apprentissage, Classification non supervisée. / During this PHD, we developped an detection algorithm. Our principal objective was to detect small targets in a complex background like clouds for example.For this, we used the spatial covariate structure of the real images.First, we developped a collection of models for this covariate structure. Then, we selected a special model in the previous collection. Once the model selected, we applied the likelihood ratio test to detect the potential targets.We finally studied the performances of our algorithm by testing it on simulated and real images.
|
2 |
Non- and semiparametric models for conditional probabilities in two-way contingency tables / Modèles non-paramétriques et semiparamétriques pour les probabilités conditionnelles dans les tables de contingence à deux entréesGeenens, Gery 04 July 2008 (has links)
This thesis is mainly concerned with the estimation of conditional probabilities in two-way contingency
tables, that is probabilities of type P(R=i,S=j|X=x), for (i,j) in {1, . . . , r}×{1, . . . , s}, where
R and S are the two categorical variables forming the contingency table, with r and s levels respectively, and
X is a vector of explanatory variables possibly associated with R, S, or both. Analyzing such a conditional
distribution is often of interest, as this allows to go further than the usual unconditional study of the behavior
of the variables R and S. First, one can check an eventual effect of these covariates on the distribution of
the individuals through the cells of the table, and second, one can carry out usual analyses of contingency
tables, such as independence tests, taking into account, and removing in some sense, this effect. This helps
for instance to identify the external factors which could be responsible for an eventual association between
R and S. This also gives the possibility to adapt for a possible heterogeneity in the population of interest,
when analyzing the table.
|
3 |
Estimation, validation et identification des modèles ARMA faibles multivariésBoubacar Mainassara, Yacouba 28 November 2009 (has links) (PDF)
Dans cette thèse nous élargissons le champ d'application des modèles ARMA (AutoRegressive Moving-Average) vectoriels en considérant des termes d'erreur non corrélés mais qui peuvent contenir des dépendances non linéaires. Ces modèles sont appelés des ARMA faibles vectoriels et permettent de traiter des processus qui peuvent avoir des dynamiques non linéaires très générales. Par opposition, nous appelons ARMA forts les modèles utilisés habituellement dans la littérature dans lesquels le terme d'erreur est supposé être un bruit iid. Les modèles ARMA faibles étant en particulier denses dans l'ensemble des processus stationnaires réguliers, ils sont bien plus généraux que les modèles ARMA forts. Le problème qui nous préoccupera sera l'analyse statistique des modèles ARMA faibles vectoriels. Plus précisément, nous étudions les problèmes d'estimation et de validation. Dans un premier temps, nous étudions les propriétés asymptotiques de l'estimateur du quasi-maximum de vraisemblance et de l'estimateur des moindres carrés. La matrice de variance asymptotique de ces estimateurs est d'une forme "sandwich", et peut être très différente de la variance asymptotique obtenue dans le cas fort. Ensuite, nous accordons une attention particulière aux problèmes de validation. Dans un premier temps, en proposant des versions modifiées des tests de Wald, du multiplicateur de Lagrange et du rapport de vraisemblance pour tester des restrictions linéaires sur les paramètres de modèles ARMA faibles vectoriels. En second, nous nous intéressons aux tests fondés sur les résidus, qui ont pour objet de vérifier que les résidus des modèles estimés sont bien des estimations de bruits blancs. Plus particulièrement, nous nous intéressons aux tests portmanteau, aussi appelés tests d'autocorrélation. Nous montrons que la distribution asymptotique des autocorrelations résiduelles est normalement distribuée avec une matrice de covariance différente du cas fort (c'est-à-dire sous les hypothèses iid sur le bruit). Nous en déduisons le comportement asymptotique des statistiques portmanteau. Dans le cadre standard d'un ARMA fort, il est connu que la distribution asymptotique des tests portmanteau est correctement approximée par un chi-deux. Dans le cas général, nous montrons que cette distribution asymptotique est celle d'une somme pondérée de chi-deux. Cette distribution peut être très différente de l'approximation chi-deux usuelle du cas fort. Nous proposons donc des tests portmanteau modifiés pour tester l'adéquation de modèles ARMA faibles vectoriels. Enfin, nous nous sommes intéressés aux choix des modèles ARMA faibles vectoriels fondé sur la minimisation d'un critère d'information, notamment celui introduit par Akaike (AIC). Avec ce critère, on tente de donner une approximation de la distance (souvent appelée information de Kullback-Leibler) entre la vraie loi des observations (inconnue) et la loi du modèle estimé. Nous verrons que le critère corrigé (AICc) dans le cadre des modèles ARMA faibles vectoriels peut, là aussi, être très différent du cas fort.
|
4 |
Estimation et détection en imagerie hyperspectrale : application aux environnements côtiers.Jay, Sylvain 31 October 2012 (has links) (PDF)
Cette thèse aborde des problématiques d'estimation et de détection supervisée en imagerie hyperspectrale, appliquées ici aux environnements côtiers. Des modèles bathymétriques de réflectance sont utilisés afin de représenter l'influence de la colonne d'eau sur la lumière incidente. Différents paramètres sont dits optiquement actifs et agissent sur le spectre de réflectance (phytoplancton, matière organique dissoute colorée...). Nous proposons d'adopter une nouvelle approche statistique pour estimer ces paramètres, traditionnellement retrouvés par inversion des modèles physiques. Différentes méthodes telles que l'estimation du maximum de vraisemblance et du maximum a posteriori, ainsi que le calcul des bornes de Cramér-Rao, sont implémentées avec succès sur les données synthétiques et réelles. Par ailleurs, nous adaptons les filtres supervisés couramment utilisés au contexte de la détection de cibles immergées. Dans le cas où les paramètres caractéristiques de la colonne d'eau sont inconnus, nous développons un nouveau filtre issu du test du rapport de vraisemblance généralisé permettant la détection sans aucune connaissance a priori sur ces paramètres.
|
5 |
On induction machine faults detection using advanced parametric signal processing techniques / Contribution à la détection de défauts dans les machines asynchrones à l’aide de techniques paramétriques de traitement de signalTrachi, Youness 22 November 2017 (has links)
L’objectif de ces travaux de thèse est de développer des architectures fiables de surveillance et de détection des défauts d’une machine asynchrone basées sur des techniques paramétriques de traitement du signal. Pour analyser et détecter les défauts, un modèle paramétrique du courant statorique en environnement stationnaire est proposé. Il est supposé être constitué de plusieurs sinusoïdes avec des paramètres inconnus dans le bruit. Les paramètres de ce modèle sont estimés à l’aide des techniques paramétriques telles que les estimateurs spectraux de type sous-espaces (MUSIC et ESPRIT) et l’estimateur du maximum de vraisemblance. Un critère de sévérité des défauts, basé sur l’estimation des amplitudes des composantes fréquentielles du courant statorique, est aussi proposé pour évaluer le niveau de défaillance de la machine. Un nouveau détecteur des défauts est aussi proposé en utilisant la théorie de détection. Il est principalement basé sur le test du rapport de vraisemblance généralisé avec un signal et un bruit à paramètres inconnus. Enfin, les techniques paramétriques proposées ont été évaluées à l’aide de signaux de courant statoriques expérimentaux de machines asynchrones en considérant les défauts de roulements et les ruptures de barres rotoriques. L’analyse des résultats expérimentaux montre clairement l’efficacité et la capacité de détection des techniques paramétriques proposées. / This Ph.D. thesis aims to develop reliable and cost-effective condition monitoring and faults detection architectures for induction machines. These architectures are mainly based on advanced parametric signal processing techniques. To analyze and detect faults, a parametric stator current model under stationary conditions has been considered. It is assumed to be multiple sinusoids with unknown parameters in noise. This model has been estimated using parametric techniques such as subspace spectral estimators and maximum likelihood estimator. A fault severity criterion based on the estimation of the stator current frequency component amplitudes has also been proposed to determine the induction machine failure level. A novel faults detector based on hypothesis testing has been also proposed. This detector is mainly based on the generalized likelihood ratio test detector with unknown signal and noise parameters. The proposed parametric techniques have been evaluated using experimental stator current signals issued from induction machines under two considered faults: bearing and broken rotor bars faults.Experimental results show the effectiveness and the detection ability of the proposed parametric techniques.
|
Page generated in 0.1264 seconds