Spelling suggestions: "subject:"tetrachlorodibenzodioxin"" "subject:"tetrachlorodibenzodioxn""
1 |
Apoptosis as a Mechanism of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-Induced ImmunotoxicityKamath, Arati B. 24 November 1998 (has links)
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental pollutant and is well known for its immunotoxic effects, particularly on the thymus. The exact mechanism by which TCDD induces thymic atrophy is not known. In the current study, we investigated whether TCDD triggers apoptosis in the thymocytes and whether Fas and Fas ligand play a role in TCDD-mediated immunotoxicity. Administration of a single dose of TCDD at 0.1, 1, 5 or 50 mg/kg body weight intraperitoneally into C57BL/6 +/+ mice caused a significant dose-dependent decrease in the thymic cellularity; whereas, in the C57BL/6 lpr/lpr (lpr) (Fas-deficient) and C57BL/6 gld/gld (gld) (Fas ligand-defective) mice, TCDD failed to induce a decrease in thymic cellularity at doses of 0.1-5 mg/kg body weight. In the lpr and gld mice, thymic atrophy was seen only at 50 mg/kg body weight of TCDD. Significant apoptosis was detected within 8-12 hours after injection in the wild type mice, whereas, in the lpr and gld mice apoptosis could not be detected. Upon culturing the thymocytes from TCDD-treated mice for 24 hours in vitro, the wild-type cells showed increased apoptosis when compared to the control; whereas, similar cells from lpr and gld mice did not show apoptosis. Furthermore, TCDD-treatment caused significant alterations in the expression of surface molecules on the thymocytes in the wild-type mice and minimal changes in the lpr or gld mice. Sera from TCDD-treated wild-type mice also exhibited increased levels of soluble Fas ligand. Also, TCDD-induced apoptosis was inhibited both in vitro and in vivo by caspase inhibitors and other inhibitors of apoptosis. Together, the current study demonstrates that TCDD-induced apoptosis plays an important role in thymic atrophy caused by TCDD in vivo. Furthermore, phenotypic changes in the density of thymocyte surface molecules may serve as a useful biomarker for chemical toxicity involving apoptosis. The current study also demonstrates that Fas-Fas ligand interactions play an important role in the induction of apoptosis and immunotoxicity by TCDD. / Ph. D.
|
2 |
The effects of 2,4,5-trichlorophenoxyacetic acid and 2,3,7,8-tetrachlorodibenzo-p̲-dioxin on developing chicken embryosAllred, Phillip Michael 05 1900 (has links)
No description available.
|
3 |
The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA, TIPARP-AS1Grimaldi, Giulia, Rajendra, S., Matthews, J. 21 December 2017 (has links)
Yes / The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and member of the basic helix-loop-helix-PAS family. AHR is activated by numerous dietary and endogenous compounds that contribute to its regulation of genes in diverse signaling pathways including xenobiotic metabolism, vascular development, immune responses and cell cycle control. However, it is most widely studied for its role in mediating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. The AHR target gene and mono-ADP-ribosyltransferase, TCDD-inducible poly-ADP-ribose polymerase (TIPARP), was recently shown to be part of a novel negative feedback loop regulating AHR activity through mono-ADP-ribosylation. However, the molecular characterization of how AHR regulates TIPARP remains elusive. Here we show that activated AHR is recruited to the TIPARP promoter, through its binding to two genomic regions that each contain multiple AHR response elements (AHREs), AHR regulates the expression of both TIPARP but also TIPARP-AS1, a long non-coding RNA (lncRNA) which lies upstream of TIPARP exon 1 and is expressed in the opposite orientation. Reporter gene and deletion studies showed that the distal AHRE cluster predominantly regulated TIPARP expression while the proximal cluster regulated TIPARP-AS1. Moreover, time course and promoter activity assays suggest that TIPARP and TIPARP-AS1 work in concert to regulate AHR signaling. Collectively, these data show an added level of complexity in the AHR signaling cascade which involves lncRNAs, whose functions remain poorly understood. / This work was supported by Canadian Institutes of Health Research (CIHR) operating grants (MOP-494265 and MOP-125919), an unrestricted research grant from the Dow Chemical Company, and the Johan Throne Holst Foundation to J.M. G.G. was supported by European Union Seventh Framework Program (FP7-PEOPLE2013-COFUND) under the Grant Agreement n609020 - Scientia Fellows
|
4 |
Hepatocyte-specific deletion of TIPARP, a negative regulator of the aryl hydrocarbon receptor, is sufficient to increase sensitivity to dioxin-induced wasting syndromeHutin, D., Tamblyn, L., Gomez, A., Grimaldi, Giulia, Soedling, H., Cho, T., Ahmed, S., Lucas, C., Kanduri, C., Grant, D.M., Matthews, J. 04 June 2018 (has links)
Yes / The aryl hydrocarbon receptor (AHR) mediates the toxic effects of dioxin (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin; TCDD), which includes thymic atrophy, steatohepatitis, and a lethal wasting syndrome in laboratory rodents. Although the mechanisms of dioxin toxicity remain unknown, AHR signaling in hepatocytes is necessary for dioxin-induced liver toxicity. We previously reported that loss of TCDD-inducible poly(adenosine diphosphate [ADP]-ribose) polymerase (TIPARP/PARP7/ARTD14), an AHR target gene and mono-ADP-ribosyltransferase, increases the sensitivity of mice to dioxin-induced toxicities. To test the hypothesis that TIPARP is a negative regulator of AHR signaling in hepatocytes, we generated Tiparpfl/fl mice in which exon 3 of Tiparp is flanked by loxP sites, followed by Cre-lox technology to create hepatocyte-specific (Tiparpfl/flCreAlb) and whole-body (Tiparpfl/flCreCMV; TiparpEx3−/−) Tiparp null mice. Tiparpfl/flCreAlb and TiparpEx3−/− mice given a single injection of 10 μg/kg dioxin did not survive beyond days 7 and 9, respectively, while all Tiparp+/+ mice survived the 30-day treatment. Dioxin-exposed Tiparpfl/flCreAlb and TiparpEx3−/− mice had increased steatohepatitis and hepatotoxicity as indicated by greater staining of neutral lipids and serum alanine aminotransferase activity than similarly treated wild-type mice. Tiparpfl/flCreAlb and TiparpEx3−/− mice exhibited augmented AHR signaling, denoted by increased dioxin-induced gene expression. Metabolomic studies revealed alterations in lipid and amino acid metabolism in liver extracts from Tiparpfl/flCreAlb mice compared with wild-type mice. Taken together, these data illustrate that TIPARP is an important negative regulator of AHR activity, and that its specific loss in hepatocytes is sufficient to increase sensitivity to dioxin-induced steatohepatitis and lethality. / This work was supported by Canadian Institutes of Health Research (CIHR) operating grants (MOP-494265 and MOP-125919), CIHR New Investigator Award, an Early Researcher Award from the Ontario Ministry of Innovation (ER10-07-028), an unrestricted research grant from the DOW Chemical Company, the Johan Throne Holst Foundation, Novo Nordic Foundation and the Norwegian Cancer Society to J.M.
|
5 |
Isolation and Functional Characterization of a Dioxin-Inducible CYP1A Regulatory Region From Zebrafish (<em>Danio rerio</em>)ZeRuth, Gary T 11 April 2008 (has links)
Cytochrome P4501A1 (CYP1A1) is a phase I bio-transformation enzyme involved in the metabolism of xenobiotics via the oxygenation of polycyclic aromatic hydrocarbons (PAHs) including the carcinogen, benzo(a)pyrene. Induction of the CYP1A1 gene is regulated at the transcriptional level and is ligand dependent with the prototypical 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) being the most potent known inducer of CYP1A1 transcription. This process is mediated by the AHR/ARNT signaling pathway whereby ligand binds AHR in the cytoplasm allowing its translocation to the nucleus where it binds with its hertrodimerization partner, ARNT and subsequently binds DNA at cognate binding sites termed xenobiotic responsive elements (XREs) located in the 5' flanking region of the CYP1A1 and other genes.
The zebrafish (Danio rerio) has recently become an important model system for the study of TCDD-mediated developmental toxicity due to their relative ease of maintaining and breeding, external fertilization, abundant transparent embryos, and sensitivity to TCDD similar to mammalian models. It is therefore essential to vii characterize the molecular mechanisms of AHR mediated gene regulation in this organism.
The upstream flanking region of a putative CYP1A gene from zebrafish was identified by the screening of a PAC genomic library. Sequencing revealed a region which contains 8 putative core xenobiotic response elements (XREs) organized in two distinct clusters. The region between -580 to -187 contains XRE 1-3 while the region between -2608 to -2100 contains XRE 4-8. Only XRE 1, 3, 4, 7, and 8 exhibited TCDD-dependant association of AHR/ARNT complexes when evaluated by gel shift assays. The use of in vitro mutagenesis and Luciferase reporter assays further showed that only XRE's 4, 7, and 8 were capable of conveying TCDD-mediated gene induction. The role of nucleotides flanking the core XRE was investigated through the use of EMSA and reporter assays. Similar methods were employed on additional transcription factor binding sites identified by in silico analyses revealing two sites conforming to an HNF- 3α and CREB motif, respectively, which demonstrate importance to regulation of the gene.
|
6 |
The IM-9 cell line: a model for evaluating TCDD-induced modulation of the polymorphic human hs1,2 enhancer within the 3' immunoglobulin heavy chain regulatory regionChambers-Turner, Ruth C. 26 March 2010 (has links)
No description available.
|
Page generated in 0.0385 seconds