• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesh compression

Gumhold, Stefan. Unknown Date (has links) (PDF)
University, Diss., 2000--Tübingen.
2

Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria

Apel, Thomas, Düvelmeyer, Nico 31 August 2006 (has links) (PDF)
The paper is concerned with algorithms for transforming hexahedral finite element meshes into tetrahedral meshes without introducing new nodes. Known algorithms use only the topological structure of the hexahedral mesh but no geometry information. The paper provides another algorithm which can be extented such that quality criteria for the splitting of faces are respected.
3

p-FEM quadrature error analysis on tetrahedra

Eibner, Tino, Melenk, Jens Markus 30 November 2007 (has links) (PDF)
In this paper we consider the p-FEM for elliptic boundary value problems on tetrahedral meshes where the entries of the stiffness matrix are evaluated by numerical quadrature. Such a quadrature can be done by mapping the tetrahedron to a hexahedron via the Duffy transformation. We show that for tensor product Gauss-Lobatto-Jacobi quadrature formulas with q+1=p+1 points in each direction and shape functions that are adapted to the quadrature formula, one again has discrete stability for the fully discrete p-FEM. The present error analysis complements the work [Eibner/Melenk 2005] for the p-FEM on triangles/tetrahedra where it is shown that by adapting the shape functions to the quadrature formula, the stiffness matrix can be set up in optimal complexity.
4

Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria

Apel, Thomas, Düvelmeyer, Nico 31 August 2006 (has links)
The paper is concerned with algorithms for transforming hexahedral finite element meshes into tetrahedral meshes without introducing new nodes. Known algorithms use only the topological structure of the hexahedral mesh but no geometry information. The paper provides another algorithm which can be extented such that quality criteria for the splitting of faces are respected.
5

Advanced visualization and modeling of tetrahedral meshes

Frank, Tobias 17 July 2009 (has links) (PDF)
Tetrahedral meshes are becoming more and more important for geo-modeling applications. The presented work introduces new algorithms for efficient visualization and modeling of tetrahedral meshes. Visualization consists of a generic framework that includes the extraction of geological information like stratigraphic columns, fault block boundaries, simultaneous co-rendering of different attributes and boolean operations of Constructive Solid Geometry with constant complexity. Modeling can be classified into geometric and implicit modeling. Geometric modeling addresses local mesh refinement to increase the numerical resolution of a given mesh. Implicit modeling covers the definition and manipulation of implicitly defined models. A new surface reconstruction method was developed to reconstruct complex, multi-valued surfaces from noisy and sparse data sets as they occur in geological applications. The surface can be bounded and may have discontinuities. Further, this work proposes a new and innovative algorithm for rapid editing of implicitly defined shapes like horizons based on the GeoChron parametrization. The editing is performed interactively on the 3d-volumetric model and geological constraints are respected automatically.
6

p-FEM quadrature error analysis on tetrahedra

Eibner, Tino, Melenk, Jens Markus 30 November 2007 (has links)
In this paper we consider the p-FEM for elliptic boundary value problems on tetrahedral meshes where the entries of the stiffness matrix are evaluated by numerical quadrature. Such a quadrature can be done by mapping the tetrahedron to a hexahedron via the Duffy transformation. We show that for tensor product Gauss-Lobatto-Jacobi quadrature formulas with q+1=p+1 points in each direction and shape functions that are adapted to the quadrature formula, one again has discrete stability for the fully discrete p-FEM. The present error analysis complements the work [Eibner/Melenk 2005] for the p-FEM on triangles/tetrahedra where it is shown that by adapting the shape functions to the quadrature formula, the stiffness matrix can be set up in optimal complexity.
7

Advanced visualization and modeling of tetrahedral meshes

Frank, Tobias 07 April 2006 (has links)
Tetrahedral meshes are becoming more and more important for geo-modeling applications. The presented work introduces new algorithms for efficient visualization and modeling of tetrahedral meshes. Visualization consists of a generic framework that includes the extraction of geological information like stratigraphic columns, fault block boundaries, simultaneous co-rendering of different attributes and boolean operations of Constructive Solid Geometry with constant complexity. Modeling can be classified into geometric and implicit modeling. Geometric modeling addresses local mesh refinement to increase the numerical resolution of a given mesh. Implicit modeling covers the definition and manipulation of implicitly defined models. A new surface reconstruction method was developed to reconstruct complex, multi-valued surfaces from noisy and sparse data sets as they occur in geological applications. The surface can be bounded and may have discontinuities. Further, this work proposes a new and innovative algorithm for rapid editing of implicitly defined shapes like horizons based on the GeoChron parametrization. The editing is performed interactively on the 3d-volumetric model and geological constraints are respected automatically.

Page generated in 0.0485 seconds