• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cutting Tetrahedra : Affordances and Limitations of Using Virtual Reality Visualization for Tetrahedral Cutting / Tetraederskärning : Fördelar och begränsningar med att använda virtual reality för att visualisera skärning av tetraeder

Lönnerberg, Mattias January 2017 (has links)
Finite element method researchers aim to create algorithms for optimally cutting complex 3D shapes into several tetrahedra for computational efficiency in simulations. It is difficult to create a mental representation of the 3D shapes as they increase in complexity. Our hypothesis is that a virtual reality (VR) visualization could help with creating this mental 3D representation. In this thesis, a desktop tool using a 2D monitor and a virtual reality tool were compared in a controlled within-subject user study. The findings show that VR gave a better understanding of the 3D objects. Participants reported VR to be more intuitive and enjoyable than the 2D monitor. However, it did not improve the time it took to complete the study tasks and, although it made the users perceive that they were more accurate, the observational data suggests that more accurate cuts were made using the desktop tool. / Forskare försöker skapa algoritmer för att optimalt skära komplexa 3D former i flera tetraeder för att simplifiera simuleringar. Det är svårt att skapa en mental representation av 3D figurerna när dom blir mer komplexa. En virtual reality visualisering skulle kunna hjälpa till att skapa denna mentala 3D representation. Genom att skapa ett verktyg för en dator med 2D monitor och ett verktyg som använder VR och därefter jämföra dem i en kontrollerad användarstudie med upprepade försök, visade det sig att VR gav en bättre förståelse av 3D objekten. Det var dessutom mer intuitivt och njutbart. Dock minskade det inte tiden som behövdes för att avsluta studiens uppgifter och trots att användarna uppfattade att dom var mer pricksäkra i VR så påvisade den observerade datan att användare gjorde mer träffsäkra skärningar i verktyget utan VR.
22

Crystal Engineering of Giant Molecules Based on Perylene Diimide Conjugated Polyhedral Oligomeric Silsesquioxane Nano-Atom

Ren, He 09 June 2016 (has links)
No description available.
23

Reconstruction Volumique de Résultats de Simulation à Base Chimère / Volumetric Reconstruction of Chimera Simulation Results

Huynh, Minh Duc 09 July 2012 (has links)
La simulation numérique des écoulements est une étape essentielle de la conception des turbines à gaz équipant les hélicoptères. La recherche permanente de la performance a conduit à des géométries de turbines très complexes et il devient de plus en plus difficile de modéliser des grilles de simulation qui épousent parfaitement la CAO des moteurs. La technique chimère permet de s’affranchir des contraintes de recollement parfait des différentes grilles en autorisant leur chevauchement. Cependant elle soulève de nouveaux problèmes lors de la phase de post-traitement, lorsqu’il s’agit d’exploiter les résultats de simulation afin de faire de nouveaux calculs ou de les visualiser, parce que les outils usuels ne sont pas adaptés à ces configurations particulières. Dans le cadre des deux premiers projets du programme MOSART du pôle de compétitivité Aerospace Valley, respectivement MACAO et OSMOSES, nous avons travaillé en collaboration avec l’entreprise Turbomeca à la conception d’une méthode de reconstruction volumique afin de traiter les résultats de simulations à base chimère. Nous avons ainsi proposé une méthode innovante permettant de reconstruire une partition de l’espace de simulation exempte de chevauchement entre grilles. La nouvelle partition conserve le maximum de propriétés des grilles d’origine et assure en tout point la conformité aux bords. La complexité théorique est linéaire avec la taille des grilles d’origine et nous permet d’obtenir des temps de traitement de l’ordre de la seconde pour des grilles de plusieurs centaines de milliers de mailles. Le principal intérêt de ce travail est de rendre exploitables les résultats de simulations à base chimère par les outils de post-traitement, qu’il s’agisse d’outils maison ou des nombreux logiciels commerciaux ou OpenSource disponibles, condition indispensable pour l’adoption de la méthode chimère par les bureaux d’études. / Computationnal fluid dynamics is an essential step in gas turbine modelling. Continuous optimization of turbines has led to sophisticated geometries, which raises severe issues for the design of adapted simulation grids. The chimera technique aims at relaxing geometry matching constraints by allowing grids overlap. However, post-processing of simulation results performed over chimera grids raises new issues because usual tools are not tuned for this particular geometricconfigurations. In the framework of the MOSART programme of the world competitiveness cluster Aerospace Valley, we have been working in collaboration with Turbomeca in order to develop a technique for the volumetric reconstruction of chimerasimulation results. We propose an innovative method that allows us to build a collection of non-overlapping grids while preserving the main properties of the former simulation grids and featuring boundary conforming property everywhere.The theorical complexity of our algorithms has proved to be linear in the size of the former grids and leads to computation times of a few seconds for grids of hundreds of thousands of cells. The main impact of this work leads in the possibility of using any post-processing tool, including a large number of OpenSource solutions, for post-processing chimera simulation results, which is a mandatory condition for the wide acceptance of this method by industry actors.
24

Virtual experiments and designs of composites with the inclusion-based boundary element method (iBEM)

Wu, Chunlin January 2021 (has links)
This dissertation develops and implements an effective numerical scheme, the inclusion-based boundary element method (iBEM), to investigate the mechanical and multi-physical properties of the composites containing arbitrarily shaped particles. Besides the linear elasticity and transient heat conduction problems shown in the dissertation, it can be extended to other problems, such as potential flows and Stokes flows. Through the combination of conventional boundary element method (BEM) and the Eshelby's equivalent inclusion method (EIM), the local field is obtained through superposition of the domain integral of eigen-fields and boundary integral equations. Firstly, the boundary value problems of a composite containing various fully bonding phases of subdomains is introduced. Due to the continuity of displacement (potential) and traction (flux) at the interfaces between different material phases, the interfacial continuity equations are established, which can be solved with the multi-region BEM conventionally. Thanks to Eshelby's celebrated contribution, the material difference in inhomogeneity problems is simulated by an eigenstrain on the inclusion domain but with the same material properties as the matrix. Therefore, the boundary value problems with inhomogeneities can be transformed as domain integral of Green's function with the eigenstrain over the inclusion, where can be determined by the equivalent stress conditions in EIM. Hence, the algorithm of iBEM is formulated and established on the basis of boundary conditions and equivalent stress equations instead of various continuity constraint equations, which saves efforts in computational resources and pre/post-process. The domain integral of Green's function is the key to the algorithm of iBEM, as it bridges the inhomogeneities and the boundary. The closed-form expression of domain integrals for ellipsoidal / elliptical inclusions with polynomial eigenstrain, polygonal and polyhedral inclusions with constant eigenstrain have already existed in the literature. However, it is not applicable to arbitrary particles with varying eigenstrain. This dissertation derives the closed-form domain integrals for polygon and polyhedral inclusions with polynomial eigenstrain source terms, which creates feasibility to solve the local field and effective material properties for composites with arbitrary particles. Although the EIM with polynomial-form eigenstrain has been applied to simulate the material mismatch for ellipsoidal / elliptical inhomogeneities by using the Taylor's of eigenstrain field at the particle center, when it is extended to angular particles, the inaccuracy is significantly reduced due to the rapid and complicated eigenstrain variation in the neighborhood of vertices with the strong singular effects. Therefore, the domain discretization of an angular particle is proposed to tackle the complicated distribution of elastic fields, which keeps the features of exactness (no approximation of interior field) and 𝐂⁰ continuity of eigenstrain. Hereby, the iBEM is proposed to serve as an effective and powerful tool, which takes the advantages of both BEM and EIM. The interaction of inhomogeneities is considered in the process of constructing EIM equations, and boundary effects are taken into account as the contribution to displacement of the eigen-field over inhomogeneities, hence, a complete linear equation system can be established. For the inclusion problems with a prescribed eigenstrain, no domain discretization is required because the exact elastic solution is obtained given the specific dimension of the geometry. Regarding to inhomogeneity problems, 1) the ellipsoidal / elliptical shape is versatile, which could be switched to various of shapes by adjusting the aspect ratio and orientations; 2) though the angular subdomain requires discretization, this method is rapidly convergent and no mesh is needed for the matrix. Therefore, this method enables the simulation of thousands 3𝐷 and 2𝐷 arbitrary shaped particles in a desk-top computer and the effective moduli can be obtained through virtual experiments (i.e, uni-axial loading) or periodic boundary conditions. This method can be easily extended to multi-physical problems, such as transient hear transfer, steady state heat, through changing the fundamental solutions accordingly. Three major packages have been added to the iBEM software, as transient heat transfer, closed-form 2D/3D domain integrals, and domain discretization method. Some case studies demonstrate the capability and applications of this method and software. This main contributions of the PhD studies are as follows: 1) The closed-form domain integrals for polygonal and polyhedral inhomogeneities have been derived based on the gravitational potential theory and transformed coordinates. The solutions are verified with the classic solution of circular and spherical potentials with polynomial source terms (i.e, linear and quadratic) by using many triangular and tetrahedral elements. It enables to solve the inhomogeneity problems with arbitrary particles. 2) Due to the discontinuity on the surfaces and edges of the subdomains and strong singular effects on the vertices, the variation of eigenstrain field is complicated in the neighborhood of edges and vertices. The domain discretization approach is proposed to provide a rapid convergent and effective solution in the infinite space. Different from the Taylor's expansion, the eigenstrain is assigned exactly at the nodes with shape functions instead of at the centroid of the elements, therefore, a 𝐂⁰ continuity is enforced. Here 3-node, 6-node triangular elements and 4-node, 10-node tetrahedral elements are implemented in the code of iBEM, which agree well with FEM but with much fewer of elements. Other types of element are also implementable in the same fashion. 3) The discretization method is applied to investigate the stress singularities of a vertex on an isosceles triangle embedded in an unbounded matrix. Two types of stress singularities are investigated: when the load is applied to the triangular inclusion with the same stiffness as the matrix, the singularity is caused by the irregular load distribution, namely load singularity, and can be exactly evaluated by integral of the potentials on the source with Eshelby's tensor. The second singularity, namely material singularity, is caused by the stiffness mismatch between the triangular inhomogeneity and the matrix under a uniform far field stress, in which the material mismatch is simulated by an eigenstrain. The relationship between the load singularity and material singularity is investigated, and the linkages of these singularities with line distributed force, cracking, and point force are discussed. 4) A parametric study of accuracy on stress field for uniform, linear and quadratic eigenstrain fields was performed and case studies have been presented to demonstrate the capability of iBEM for virtual experiments of ellipsoidal / elliptical inhomogeneities. Subsequently, combining the domain discretization method, iBEM is also applied to study the local elastic fields of the angular inhomogeneities. The effective material behavior is obtained with either large number of particles or periodic boundary condition (PBC) and some interesting discoveries of microstructure-dependent material behavior are reported with the aid of virtual experiments. 5) The iBEM is extended to multiphysical problems. The temperature and hear flux fields of composite materials containing phase change materials (PCM) for energy efficient buildings is demonstrated. Different from the static EIM, the thermal property mismatch between PCM particle and matrix phase is simulated with a uniformly distributed eigen-temperature gradient field and a fictitious heat source on the particle. With the equivalent heat flux conditions and the specific heat-temperature relationship, the eigen-temperature gradient and fictitious heat source can be solved and temperature field of the bounded domain can be calculated. Verified with FEM and laboratory measurements of the transient heat transfer within a building block containing a PCM capsule. Parametric studies have also been conducted to study the influences of the PCM location and volume fraction on the temperature fields of composites with multiple particles. The virtual experiments demonstrate the energy saving and phase delay by using the PCM-concrete wall panel. In summary, the proposed iBEM algorithm bridges the gap between conventional EIM and BEM for virtual experiments of composites samples. The combination of shape functions and domain integrals of polygonal / polyhedral subdomain enables its application to arbitrary shaped particles. It serves as a powerful tool to conduct virtual experiments for composite materials with various geometry and investigate the effective moduli under uni-axial load of samples with large number of particles or under the periodic boundary condition. In the future, the iBEM will be implemented for time independent and dependent nonlinear behavior of composites, such as elastoplastic, viscoelastic, and dynamic elastic problems. In addition to the current parallel computing scheme, GPU can be employed to speed up particle - particle interactions.
25

Odhady počtu prázdných čtyřstěnů a ostatních simplexů / Bounds of number of empty tetrahedra and other simplices

Reichel, Tomáš January 2020 (has links)
Let M be a finite set of random uniformly distributed points lying in a unit cube. Every four points from M make a tetrahedron and the tetrahedron can either contain some of the other points from M, or it can be empty. This diploma thesis brings an upper bound of the expected value of the number of empty tetrahedra with respect to size of M. We also show how precise is the upper bound in comparison to an approximation computed by a straightforward algorithm. In the last section we move from the three- dimensional case to a general dimension d. In the general d-dimensional case we have empty d-simplices in a d-hypercube instead of empty tetrahedra in a cube. Then we compare the upper bound for d-dimensional case to the results from another paper on this topic. 1
26

Design, Synthesis, and Self-Assembly of Well-Defined Hybrid Materials Including Polymer Amphiphiles and Giant Tetrahedra Molecules Based on POSS Nanoparticles

Huang, Mingjun January 2015 (has links)
No description available.
27

Čtyřstěny a jejich vlastnosti / Tetrahedra and their properties

ČERVENKOVÁ, Kateřina January 2019 (has links)
This diploma thesis Tetrahedra and their properties summarizes the basic properties of tetrahedron. The main goal is to introduce the topic to a reader of this thesis. Author would like to provide basic information about the particular types of tetrahedra and their properties. I try to examine there a spatial analogy of selected terms of a triangle. Conditions for the existence of the orthocenter of a tetrahedron are derived. Then for a non-orthocetric tetrahedron the Monge point as its generalization is introduced. By most properties their proofs are given. In the final part worksheets for pupils of primary and secondary schools are designed. Pictures in the thesis are created in a geometrical program called GeoGebra 3D. These pictures can help the reader to understand this problem.
28

Löslichkeit und Diffusion von Wasserstoff in dünnen Schichten amorpher ZrTiNiCuBe- und ZrAlNiCu-Legierungen / Solubility and diffusivity of hydrogen in thin films of amorphous ZrTiNiCuBe- and ZrAlNiCu-alloys

Bankmann, Joachim 28 January 2003 (has links)
No description available.
29

Grafické intro 64kB s použitím OpenGL / Graphics Intro 64kB Using OpenGL

Milet, Tomáš January 2012 (has links)
This thesis deals with the creation of the intro with limited size. This work describes methods for reducing the size of the final application. The main part describes methods for generating graphic content and methods for its animation. It deals with creation of textures and geometry. Another part is aimed on the physical simulation of particle and elastic systems.

Page generated in 0.0357 seconds