• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelação matemática de contatos lubrificados micro-texturizados / Mathematical modeling of micro-textured lubricated contacts

Palma, Alfredo Del Carmen Jaramillo 27 May 2015 (has links)
No desenho de mecanismos lubrificados, tais como Mancais hidrodinâmicos ou anéis de pistões de Motores a Combustão, atrito e desgaste são efeitos não desejados. Por exemplo, é sabido que aproximadamente 5% da energia perdida em um motor a combustão esta associada ao atrito presente no sistema de anéis/cilindro do pistão. Após vários trabalhos experimentais e teóricos, as superfícies texturizadas hão mostrado serem capazes de reduzir o atrito em algumas condições de funcionamento. O estudo da relação entre o atrito e os parâmetros de texturização é um problema difícil e de interesse tanto industrial como acadêmico. O contexto matemático e computacional destes trabalhos apresentam desafios por si mesmos, como o estudo da boa colocação dos modelos matemáticos, a consideração adequada das descontinuidades das superfícies. Este trabalho enfoca-se no contexto matemático, apresentando e estudando a equação de Reynolds junto com diferentes modelos de cavitação que podem encontrar-se na literatura. Começamos estudando a matemática da equação de Reynolds. Depois disso, modelos de cavitação são inclusos, aumentando a complexidade da matemática envolvida. Seguidamente, como aplicação da teoria apresentada, um rolamento deslizante será estudado junto com uma texturização da superfície móvel. Os resultados deste estudo revelam mecanismos básicos de redução de atrito e propriedades gerais que não haviam sido reportadas anteriormente. Possíveis trabalhos futuros são apresentados, tal como o uso de Métodos Descontínuos de Galerkin em vez dos Métodos de Volumes Finitos. O último em procura de uma melhor acomodação da formulação matemática, tentando melhorar a flexibilidade da malha e a precisão. / In the design of lubricated mechanisms, such as Journal Bearings or Piston Rings of Combustion Engines, friction and wear are undesirable effects. It is known, for instance, that about 5% of the energy loss in a Combustion Engine is associated to friction taking place in the Piston Rings/Cylinder system. Textured surfaces, after a significant number of experimental and theoretical studies, have shown to reduce friction in some operating conditions. The study of the relation between the friction and the texture parameters is a challenging problem with both industrial and academic interest. The mathematical and computational frameworks involved present challenges by themselves, such as establishing the well-posedness of the mathematical models with suitable consideration of discontinuous surfaces. In this work we focus on the mathematical framework, presenting and studying the Reynolds equation along with different state-of-the-art cavitation models. We begin by studying the Reynolds equation and then incorporate two different cavitation models of increasing mathematical complexity. Next, as an application of the theory already presented, a slider bearing is numerically studied considering a sinusoidal texture on the runner. The results of this study unveil basic mechanisms of friction reduction and global quantitative trends that had not been previously reported. In this way, the applicability of numerical tools for texture selection is established. Future research directions are also identified, such as using Discontinuous Galerkin methods instead of Finite Volume Methods, aiming at improving the mesh exibility and thus the accuracy of the discrete formulation.
2

Modelação matemática de contatos lubrificados micro-texturizados / Mathematical modeling of micro-textured lubricated contacts

Alfredo Del Carmen Jaramillo Palma 27 May 2015 (has links)
No desenho de mecanismos lubrificados, tais como Mancais hidrodinâmicos ou anéis de pistões de Motores a Combustão, atrito e desgaste são efeitos não desejados. Por exemplo, é sabido que aproximadamente 5% da energia perdida em um motor a combustão esta associada ao atrito presente no sistema de anéis/cilindro do pistão. Após vários trabalhos experimentais e teóricos, as superfícies texturizadas hão mostrado serem capazes de reduzir o atrito em algumas condições de funcionamento. O estudo da relação entre o atrito e os parâmetros de texturização é um problema difícil e de interesse tanto industrial como acadêmico. O contexto matemático e computacional destes trabalhos apresentam desafios por si mesmos, como o estudo da boa colocação dos modelos matemáticos, a consideração adequada das descontinuidades das superfícies. Este trabalho enfoca-se no contexto matemático, apresentando e estudando a equação de Reynolds junto com diferentes modelos de cavitação que podem encontrar-se na literatura. Começamos estudando a matemática da equação de Reynolds. Depois disso, modelos de cavitação são inclusos, aumentando a complexidade da matemática envolvida. Seguidamente, como aplicação da teoria apresentada, um rolamento deslizante será estudado junto com uma texturização da superfície móvel. Os resultados deste estudo revelam mecanismos básicos de redução de atrito e propriedades gerais que não haviam sido reportadas anteriormente. Possíveis trabalhos futuros são apresentados, tal como o uso de Métodos Descontínuos de Galerkin em vez dos Métodos de Volumes Finitos. O último em procura de uma melhor acomodação da formulação matemática, tentando melhorar a flexibilidade da malha e a precisão. / In the design of lubricated mechanisms, such as Journal Bearings or Piston Rings of Combustion Engines, friction and wear are undesirable effects. It is known, for instance, that about 5% of the energy loss in a Combustion Engine is associated to friction taking place in the Piston Rings/Cylinder system. Textured surfaces, after a significant number of experimental and theoretical studies, have shown to reduce friction in some operating conditions. The study of the relation between the friction and the texture parameters is a challenging problem with both industrial and academic interest. The mathematical and computational frameworks involved present challenges by themselves, such as establishing the well-posedness of the mathematical models with suitable consideration of discontinuous surfaces. In this work we focus on the mathematical framework, presenting and studying the Reynolds equation along with different state-of-the-art cavitation models. We begin by studying the Reynolds equation and then incorporate two different cavitation models of increasing mathematical complexity. Next, as an application of the theory already presented, a slider bearing is numerically studied considering a sinusoidal texture on the runner. The results of this study unveil basic mechanisms of friction reduction and global quantitative trends that had not been previously reported. In this way, the applicability of numerical tools for texture selection is established. Future research directions are also identified, such as using Discontinuous Galerkin methods instead of Finite Volume Methods, aiming at improving the mesh exibility and thus the accuracy of the discrete formulation.
3

Hydrodynamics of oil in contact with an aqueous foam : wetting, imbibition dynamics and flow in rough confined media / Hydrodynamique d'une huile au contact d'une mousse aqueuse : mouillage, dynamique d'imbibition et écoulement dans des milieux confinés rugueux

Mensire, Rémy 28 September 2016 (has links)
L’extraction de matières premières du sol à des fins énergétiques (récupération assistée d’huile) et environnementales (dépollution des sols) fait l’objet de recherches intensives en lien avec des thématiques telles que la séquestration du carbone ou la fracturation hydraulique. L’objectif est de trouver des méthodes moins destructives, moins gourmandes en matériel et en énergie, mais aussi plus efficaces et moins coûteuses. Nous proposons d’étudier une méthode alternative aux moyens conventionnels avec l’utilisation de mousses aqueuses comme agent extracteur d’huile. Les mousses aqueuses sont souvent utilisées en présence d'huile : dans des applications quotidiennes comme la cosmétique et la détergence, mais aussi dans des domaines moins connus comme la décontamination des centrales nucléaires ou l’industrie pétrolière. Ainsi, des tensioactifs et du gaz sont couramment injectés dans le sol afin d'améliorer les procédés de récupération de pétrole. Nous explicitons deux mécanismes d'extraction que nous quantifions en termes d'efficacité et de stabilité. Tout d'abord, la mousse peut aspirer de l'huile en son sein, comme le ferait une éponge. Ensuite, lorsque celle-ci est mise en écoulement, elle peut entraîner de l'huile confinée dans la rugosité d'une surface par cisaillement. Notre étude s’appuie en particulier sur une analyse théorique et expérimentale, à la fois multi-échelle, statique et dynamique pour laquelle nous avons systématiquement fait varier les paramètres géométriques (configuration de l'huile, taille des bulles et fraction volumique de liquide dans la mousse) et physico-chimiques (tensions interfaciales, rigidité des interfaces entre bulles et viscosité) / The extraction of raw materials from the soil for energetical (enhanced oil recovery) and environmental purposes (soil remediation) is the subject of intense fundamental and applied research. This field is related to other important topics, such as carbon sequestration and hydraulic fracturing. The goal is to find fewer destructive, as well as energy and material-saving methods. These techniques should also be cost-effective and more efficient. To find a substitution to conventional means, we study an alternative method that puts aqueous foams on the map as the extraction material. Aqueous foams are often used in numerous daily applications, such as cosmetics and detergency, but also in less known fields, such as the decommissioning of nuclear power plants and the oil industry. Thus, surfactants and gas are commonly injected into the soil to improve the recovery processes of oil. We explain two extraction mechanisms that we quantify in terms of efficiency and stability. On one hand, the foam is able to absorb oil, similarly to a solid sponge. On the other hand, when a flow of foam is induced, the foam can entrain oil confined in the roughness of a surface by shearing the oil-water interface. Our work especially lies on a theoretical and experimental analysis, which is multiscale, static and dynamic. We systematically vary the geometrical parameters (oil configuration, bubble size and liquid fraction in the foam) and the physical and chemical parameters (interfacial tensions, interfacial rigidity and viscosity)
4

Relaxation Behaviour of Patterned Composite Polymer Surfaces and Underlying Compensation Phenomenon

Bhadauriya, Sonal January 2019 (has links)
No description available.
5

Impacts de gouttes en caléfaction sur substrat localement texturés / Drop impacts in Leidenfrost regime on locally textured substrates

Ehlinger, Quentin 17 July 2018 (has links)
Cette thèse expérimentale porte sur des impacts de gouttes en caléfaction, aussi appelée régime Leidenfrost. Dans ce cas, la goutte est isolée thermiquement et mécaniquement du substrat surchauffé par une fine couche de vapeur. On s'affranchit ainsi de la friction visqueuse. Les substrats présentent des textures micrométriques localisées. On retrouve un régime autosimilaire d'étalement aux temps courts. On caractérise des régimes de recouvrement d'un défaut ponctuel par la goutte. Ces régimes sont dictés par l'épaisseur de lamelle par rapport à celle du défaut. Les défauts génèrent des excroissances dans leur sillage dont la dynamique peut être approchée selon deux modèles inertio-capillaires ; l'un valable aux temps courts, l'autre aux temps plus longs. En présence de plusieurs défauts, on fragmente la lamelle depuis plusieurs sites selon le ratio entre largeur des défauts et épaisseur de la lamelle. On simule par un algorithme de pavage le motif final sur lequel le fluide se concentre à la fin de la fragmentation. Grâce à des rugosités plus complexes on peut canaliser l'étalement de la goutte. On exacerbe alors l'étalement maximal dans l'axe des canaux. On peut aussi inhiber l'étalement par des textures circulaires. Les rugosités affectent le temps avant rebond de la goutte. On exhibe une dépendance générale unique entre temps avant rebond et étalement maximal. La dépendance est valable lorsque les textures exacerbent l’étalement, aussi bien que lorsqu’elles l’inhibent / The presented work deals with drop impacts in Leidenfrost regime. In such a case, the drop is thermally and mechanically isolated from the overheated substrate by a thin vapor layer. Viscous friction can therefore be neglected. The substrates are shaped with localized micrometric textures. We rediscover a self-similar spreading regime at short times. We characterize covering regimes of a single defect by the drop. Those regimes are driven by the ratio between lamella thickness and defect thickness. Defects give rise to excrescences in their wake, whose dynamic can be approached by two inertial-capillary recoil models. One is valid at short times and the other at longer times. In the case of several defects, we break up the lamella from different sites according to the ratio between defect width and lamella thickness. We numerically predict, with a tessellation algorithm, the pattern on which the fluid is localized at the end of the fragmentation. Through more complex textures, we can channel the drop spreading. The spreading is increased in the directions of the channels. One can also inhibit the spreading with circular textures. The textures affect the time before drop rebound. We exhibit a general and unique dependency between time before rebound and maximal spreading. This dependency is valid when textures increase the spreading as well as when they inhibit it
6

Experimental Study On The Impact Of Water Drops On Groove-Textured Surfaces

Kannan, R 04 1900 (has links) (PDF)
The interaction of a liquid drop with a solid surface is being actively studied to understand practically encountered scenarios such as the impact of fuel spray droplets onto the walls of engine combustion chamber, the formation of thermal barrier coating on the surfaces of turbine blades, the process of ink-jet printing, etc. The surface topography of solid surface is one of the major parameters influencing the dynamics of drop-surface interaction process. Understanding the precise role of surface topography features such as micro asperities and grooves on the spreading and receding processes of impacting liquid drops is crucial for the improvement in abovementioned applications. Recent developments in the fabrication of micro- and nano-structures on solid surfaces provide fabulous opportunities to investigate the role of single/multiple micro asperities and grooves on the dynamics of impacting drops. The thesis deals with an experimental work on the impact of water drops on stainless steel surfaces comprising unidirectional parallel grooves. A group of six target grooved surfaces covering a wide range of surface wettability were considered. The target surfaces were prepared using the techniques of photolithography, electro discharge machining, and laser machining. Scanning electron microscope and optical surface profilometer were used to characterize the groove texture geometrical parameters of the target grooved surfaces. The experiments of drop impact were carried out in an experimental apparatus consisting of a liquid drop generator, a substrate table, and a digital video imaging system. Free-falling distilled water drops released from a certain height were allowed to impact normally on the target surfaces. The image sequences of drop impact dynamics were constructed from the images captured using the digital video imaging system. Majority of the drop impact experiments were captured using a high speed video camera operating with frame speed ranging from 3000 to 10000 fps. For the target grooved surfaces, the impact dynamics was analyzed for the impacting drop liquid oriented both in the direction perpendicular to the grooves ( ) and in the direction parallel to the grooves (||) via independent test runs. The captured digital frames were used to deduce the temporal variation of impacting drop parameters such as drop contact diameter, drop contact angle, and drop height at the center of impacting drop with the aid of image processing software. The impacting drops were characterized in terms of Weber number, We expressed in terms of drop impact velocity and drop diameter measured just before the start of impact process. The study covered We ranging from 1.8 to 170. In general, the groove texture on the solid surface influences the drop impact process for all We examined in the study. The effect is more pronounced for the receding of impacting drops. For high We drops, the groove texture enhances the perturbations seen at the periphery of spreading lamella. The study showed quantitatively that the drop impact process on a target grooved surface comprising unidirectional parallel grooves develops a non-axisymmetric drop flow on the grooved surface exhibiting different spreading and receding processes of impacting drop liquid in the directions perpendicular ( ) and parallel (||) to the grooves. The maximum spreading diameter reached immediately after the completion of early inertia-dominated spreading in is less than that obtained in || due to the loss of drop kinetic energy caused by the pinned motion of drop liquid in . The non- axisymmetric drop flow on the target grooved surface develops a difference between the frequencies of contact angle oscillation of impacting drop liquid in  and ||. The frequency difference in contact angle oscillation causes the beating phenomenon in the temporal variation of the contact angle anisotropy, Δθ and drop height at the center of impacting drop, Z. For a given target grooved surface, the experimental measurements suggested that the beat frequency is almost independent of We. The temporal variation of Δθ and Z do not show the traces of beating phenomenon for the impact of high We drops. Owing to the non-axisymmetric drop flow, the final equilibrium drop shape is eccentric for the impact of low We drops and approaches a circular shape for the impact of high We drops. The role of groove texture geometrical parameters is seen in the drop impact process via the surface wettability especially for the impact of low We drops. Larger surface roughness factor makes the target grooved surface to exhibit hydrophobic characteristics.
7

Experimental and Theoretical Studies of Liquid Drop Impact on Solid Surfaces Comprising Smooth and Texture Portions

Vaikuntanathan, Visakh January 2015 (has links) (PDF)
Solid surfaces featuring a spatial variation of surface wettability along particular directions on their surface, referred to as wettability gradient surfaces, are becoming increasingly important in practical applications such as enhancement of boiling and condensation heat transfer and separation of immiscible liquids in smart micro-fluidic devices. With the aid of an external energy input, such as mechanical vibration or impact kinetic energy, a liquid drop on such surfaces gets propelled towards more wettable region on the surface. A fundamental study of impact dynamics of liquid drops on such solid surfaces is relevant in understanding their effectiveness. The present thesis reports a combined experimental and theoretical study on the impact dynamics of liquid drops on solid surfaces comprising a smooth portion and a groove-textured portion separated by a junction line (dual-textured surfaces). Three different dual-textured surfaces – two made of intrinsically hydrophilic stainless steel and one of intrinsically hydrophobic poly-di-methyl-siloxane (PDMS) – are considered. Liquid drops, with Weber number (We) in the range 1–100, are impacted on the junction of the dual-textured surfaces and the entire impact dynamics across the junction is captured using a high speed video camera. Experiments of drop impact on the homogeneous surface portions of dual-textured surfaces (far away from the junction) are also conducted. The temporal variation of drop contact radius measured from the junction line on smooth and groove-textured portions of the dual-textured surfaces exhibits four distinct stages – primary spreading, primary receding, secondary spreading on more wettable surface portion, and final equilibrium – with the final outcome being the bulk movement and deposition of liquid drop away from the junction towards the more hydrophilic surface portion. Secondary parameters characterizing each of these different stages are extracted from these measurements and a one-to-one comparison between dual-textured and homogenous surfaces is presented. A significant effect of dual-texture nature is seen on the receding process of impacting drops. On the dual-textured surfaces, the receding velocity of impacting drop on the groove-textured portion is always greater than that on the smooth portion. The asymmetry in drop receding results in a drop drift velocity towards the more wettable surface portion leading to an enhanced secondary drop spreading on the more wettable smooth portion. The drop drift velocity shows a decrease with We at low We and remains almost constant at higher We after a particular value of We. Correspondingly, the ratio of the maximum drop spread factor achieved during the secondary spreading (βm2) to that during the primary spreading (βm) is seen to decrease with We at low We and remains constant at higher We. Owing to the differences in the static equilibrium wetting difference, βm2/βm is more on the stainless steel dual-textured surfaces than on the PDMS dual-textured surface. The presence of dual-texture results in a higher final spread on more wettable smooth portion and smaller final spread on less wettable textured portion of the dual-textured surfaces and this difference decreases with We. The difference in final spread factors between the smooth and textured portions is more on the stainless steel dual-textured surfaces than the PDMS dual-textured surface. The bulk drop movement (ξ), characterized in terms of distance measured from the junction to the final drop center, decreases with We at low We and remains constant at higher We on the stainless steel dual-textured surfaces whereas it remains constant at low We and decreases at higher We on the PDMS dual-textured surface. ξ on the PDMS dual-textured surface is always less than that on the stainless dual-textured surface due to the lower wetting difference across the junction of the former. Comparison of the trends of secondary parameters with the predictions from theoretical models reported in literature showed a lack of agreement. This is due to various physical processes encountered by impacting drop on the groove-textured surface, identified through experiments of drop impact on homogeneous groove-textured surfaces, such as (i) convex shape of liquid-vapor interface near contact line at maximum spreading, (ii) impregnation of drop liquid into the grooves during impact, and (iii) contact line pinning of spreading drop at the asperity edges of surface texture, as well as the wetting difference in dual-textured surfaces. The inclusion of these physical processes under conventional energy conservation approach is seen to predict the experimentally observed trends of maximum drop spread factor on the groove-textured portions. A force balance model, applied to the liquid drop configuration at the beginning of drop receding on the dual-textured surfaces, predicts the qualitative trend of ξ with We on all surfaces. Drop liquid impregnation into the grooves of textured portion at We > Wecr (critical We corresponding to transition from Cassie to impaled state) is proposed as a possible physical mechanism to account for the explanation of the specific trends of ξ with We. A theoretical model formulated using force balance at the three phase contact line beneath impacting drop on groove-textured surface is presented for the prediction of Wecr.

Page generated in 0.0598 seconds