• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistiques asymptotiques des processus ponctuels déterminantaux stationnaires et non stationnaires / Asymptotic inference of stationary and non-stationary determinantal point processes

Poinas, Arnaud 04 July 2019 (has links)
Ce manuscrit est dédié à l'étude de l'estimation paramétrique d'une famille de processus ponctuels appelée processus déterminantaux. Ces processus sont utilisés afin de générer et modéliser des configurations de points possédant de la dépendance négative, dans le sens où les points ont tendance à se repousser entre eux. Plus précisément, nous étudions les propriétés asymptotiques de divers estimateurs classiques de processus déterminantaux paramétriques, stationnaires et non-stationnaires, dans les cas où l'on observe une unique réalisation d'un tel processus sur une fenêtre bornée. Ici, l'asymptotique se fait sur la taille de la fenêtre et donc, indirectement, sur le nombre de points observés. Dans une première partie, nous montrons un théorème limite central pour une classe générale de statistiques sur les processus déterminantaux. Dans une seconde partie, nous montrons une inégalité de béta-mélange générale pour les processus ponctuels que nous appliquons ensuite aux processus déterminantaux. Dans une troisième partie, nous appliquons le théorème limite central obtenu à la première partie à une classe générale de fonctions estimantes basées sur des méthodes de moments. Finalement, dans la dernière partie, nous étudions le comportement asymptotique du maximum de vraisemblance des processus déterminantaux. Nous donnons une approximation asymptotique de la log-vraisemblance qui est calculable numériquement et nous étudions la consistance de son maximum. / This manuscript is devoted to the study of parametric estimation of a point process family called determinantal point processes. These point processes are used to generate and model point patterns with negative dependency, meaning that the points tend to repel each other. More precisely, we study the asymptotic properties of various classical parametric estimators of determinantal point processes, stationary and non stationary, when considering that we observe a unique realization of such a point process on a bounded window. In this case, the asymptotic is done on the size of the window and therefore, indirectly, on the number of observed points. In the first chapter, we prove a central limit theorem for a wide class of statistics on determinantal point processes. In the second chapter, we show a general beta-mixing inequality for point processes and apply our result to the determinantal case. In the third chapter, we apply the central limit theorem showed in the first chapter to a wide class of moment-based estimating functions. Finally, in the last chapter, we study the asymptotic behaviour of the maximum likelihood estimator of determinantal point processes. We give an asymptotic approximation of the log-likelihood that is computationally tractable and we study the consistency of its maximum.
2

Théorèmes limites fonctionnels et estimation de la densité spectrale pour des suites stationnaires.

Dede, Sophie 26 November 2009 (has links) (PDF)
L'objet de ma thèse est l'étude du comportement de certaines distances entre la mesure empirique d'un processus stationnaire et sa loi marginale (distance de type Cramér-Von Mises ou de type Wasserstein), dans le cas de variables aléatoires dépendantes au sens large, incluant par exemple, certains systèmes dynamiques. Nous établissons, dans un second chapitre, un principe de déviations modérées, sous des conditions projectives, pour une suite stationnaire de variables aléatoires bornées à valeurs dans un espace de Hilbert H, que ce soit pour un processus adapté ou non. Parmi les applications, nous avons travaillé, non seulement à l'étude de la statistique de Cramér-Von Mises, mais aussi sur les fonctions de processus linéaires (importantes dans les problèmes de prédiction) et les chaines de Markov stables. Dans le troisième chapitre, nous donnons un Théorème Limite Central pour des suites stationnaires ergodiques de différences de martingales dans L^1. Puis, par une approximation par des différences de martingales, nous en déduisons un Théorème Limite Central pour des suites stationnaires ergodiques de variables aléatoires à valeurs dans L^1, et satisfaisant des conditions projectives. Ceci nous permet d'obtenir des résultats sur le comportement asymptotique de statistiques du type distance de Wasserstein pour une importante classe de suites dépendantes. En particulier, les résultats sont appliquées à l'étude de systèmes dynamiques, ainsi qu'à celle des processus linéaires causaux. Pour finir, afin de construire des intervalles de confiance asymptotiques pour la moyenne d'une suite stationnaire à partir du Théorème Limite Central, nous proposons un estimateur lissé de la densité spectrale. Dans ce dernier chapitre, nous donnons des critères projectifs pour la convergence dans L^1 d'un estimateur lissé de la densité spectrale. Cela nous permet via un Théorème Limite Central d'avoir des régions de confiance pour les paramètres dans un modèle de régression paramétrique.
3

Estimation de paramètres pour des processus autorégressifs à bifurcation

Blandin, Vassili 26 June 2013 (has links) (PDF)
Les processus autorégressifs à bifurcation (BAR) ont été au centre de nombreux travaux de recherche ces dernières années. Ces processus, qui sont l'adaptation à un arbre binaire des processus autorégressifs, sont en effet d'intérêt en biologie puisque la structure de l'arbre binaire permet une analogie aisée avec la division cellulaire. L'objectif de cette thèse est l'estimation les paramètres de variantes de ces processus autorégressifs à bifurcation, à savoir les processus BAR à valeurs entières et les processus BAR à coefficients aléatoires. Dans un premier temps, nous nous intéressons aux processus BAR à valeurs entières. Nous établissons, via une approche martingale, la convergence presque sûre des estimateurs des moindres carrés pondérés considérés, ainsi qu'une vitesse de convergence de ces estimateurs, une loi forte quadratique et leur comportement asymptotiquement normal. Dans un second temps, on étudie les processus BAR à coefficients aléatoires. Cette étude permet d'étendre le concept de processus autorégressifs à bifurcation en généralisant le côté aléatoire de l'évolution. Nous établissons les mêmes résultats asymptotiques que pour la première étude. Enfin, nous concluons cette thèse par une autre approche des processus BAR à coefficients aléatoires où l'on ne pondère plus nos estimateurs des moindres carrés en tirant parti du théorème de Rademacher-Menchov.
4

Estimation de paramètres pour des processus autorégressifs à bifurcation

Blandin, Vassili 26 June 2013 (has links)
Les processus autorégressifs à bifurcation (BAR) ont été au centre de nombreux travaux de recherche ces dernières années. Ces processus, qui sont l'adaptation à un arbre binaire des processus autorégressifs, sont en effet d'intérêt en biologie puisque la structure de l'arbre binaire permet une analogie aisée avec la division cellulaire. L'objectif de cette thèse est l'estimation les paramètres de variantes de ces processus autorégressifs à bifurcation, à savoir les processus BAR à valeurs entières et les processus BAR à coefficients aléatoires. Dans un premier temps, nous nous intéressons aux processus BAR à valeurs entières. Nous établissons, via une approche martingale, la convergence presque sûre des estimateurs des moindres carrés pondérés considérés, ainsi qu'une vitesse de convergence de ces estimateurs, une loi forte quadratique et leur comportement asymptotiquement normal. Dans un second temps, on étudie les processus BAR à coefficients aléatoires. Cette étude permet d'étendre le concept de processus autorégressifs à bifurcation en généralisant le côté aléatoire de l'évolution. Nous établissons les mêmes résultats asymptotiques que pour la première étude. Enfin, nous concluons cette thèse par une autre approche des processus BAR à coefficients aléatoires où l'on ne pondère plus nos estimateurs des moindres carrés en tirant parti du théorème de Rademacher-Menchov. / Bifurcating autoregressive (BAR) processes have been widely investigated this past few years. Those processes, which are an adjustment of autoregressive processes to a binary tree structure, are indeed of interest concerning biology since the binary tree structure allows an easy analogy with cell division. The aim of this thesis is to estimate the parameters of some variations of those BAR processes, namely the integer-valued BAR processes and the random coefficients BAR processes. First, we will have a look to integer-valued BAR processes. We establish, via a martingale approach, the almost sure convergence of the weighted least squares estimators of interest, together with a rate of convergence, a quadratic strong law and their asymptotic normality. Secondly, we study the random coefficients BAR processes. The study allows to extend the principle of bifurcating autoregressive processes by enlarging the randomness of the evolution. We establish the same asymptotic results as for the first study. Finally, we conclude this thesis with an other approach of random coefficient BAR processes where we do not weight our least squares estimators any more by making good use of the Rademacher-Menchov theorem.
5

Comportements Asymptotiques des Processus Stationnaires et des Processus Empiriques dans des Systèmes Dynamiques

Durieu, Olivier 01 December 2008 (has links) (PDF)
Cette thèse se consacre à l'étude de théorèmes limites pour des suites de variables aléatoires stationnaires (en particulier issues d'un système dynamique). Nous nous concentrons sur deux résultats importants, notamment par leurs applications en statistiques. Nous étudions tout d'abord le comportement limite des sommes de variables aléatoires, plus précisément le théorème limite central et son principe d'invariance. Ensuite nous considérons le principe d'invariance pour les processus empiriques.<br />Dans le cadre du principe d'invariance faible de Donsker, plusieurs résultats s'obtiennent au travers d'approximations par des martingales et plus généralement par des critères projectifs. Nous comparons quatre de ces critères et montrons leur indépendance mutuelle. Les critères étudiés sont la décomposition martingale-cobord (Gordin, 1969), la condition de Hannan (1979), le critère de Dedecker et Rio (2000) et<br />la condition de Maxwell et Woodroofe (2000).<br />En ce qui concerne le comportement asymptotique des processus empiriques, nous établissons un principe d'invariance dans le cas des automorphismes du tore. Cela permet de sortir du cadre hyperbolique connu et d'obtenir un premier résultat pour une transformation partiellement hyperbolique.<br />Nous proposons également une nouvelle approche, basée sur des méthodes d'opérateurs, permettant d'établir un principe d'invariance empirique. Cette méthode s'applique en particulier aux cas où l'on a de bonnes propriétés pour une classe de fonctions ne contenant pas les fonctions indicatrices. C'est en particulier le cas de certains systèmes dynamiques dont l'opérateur de transfert admet un trou spectral.<br />En dernier lieu, suivant une question de Burton et Denker (1987), nous nous intéressons à la classe des processus pour lesquels le théorème limite central a lieu. En référence au cadre des processus empiriques, nous étudions en particulier les suites de sommes partielles des itérées d'une fonction indicatrice.

Page generated in 0.0771 seconds