• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 11
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Natural Forms Through Geometry and Structure: Design of the Parachute Pavilion

D’souza, Nicola Laila 14 July 2005 (has links)
No description available.
2

Fibonacci numbers and the golden rule applied in neural networks

Luwes, N.J. January 2010 (has links)
Published Article / In the 13th century an Italian mathematician Fibonacci, also known as Leonardo da Pisa, identified a sequence of numbers that seemed to be repeating and be residing in nature (http://en.wikipedia.org/wiki/Fibonacci) (Kalman, D. et al. 2003: 167). Later a golden ratio was encountered in nature, art and music. This ratio can be seen in the distances in simple geometric figures. It is linked to the Fibonacci numbers by dividing a bigger Fibonacci value by the one just smaller of it. This ratio seems to be settling down to a particular value of 1.618 (http://en.wikipedia.org/wiki/Fibonacci) (He, C. et al. 2002:533) (Cooper, C et al 2002:115) (Kalman, D. et al. 2003: 167) (Sendegeya, A. et al. 2007). Artificial Intelligence or neural networks is the science and engineering of using computers to understand human intelligence (Callan R. 2003:2) but humans and most things in nature abide to Fibonacci numbers and the golden ratio. Since Neural Networks uses the same algorithms as the human brain does, the aim is to experimentally proof that using Fibonacci numbers as weights, and the golden rule as a learning rate, that this might improve learning curve performance. If the performance is improved it should prove that the algorithm for neural network's do represent its nature counterpart. Two identical Neural Networks was coded in LabVIEW with the only difference being that one had random weights and the other (the adapted one) Fibonacci weights. The results were that the Fibonacci neural network had a steeper learning curve. This improved performance with the neural algorithm, under these conditions, suggests that this formula is a true representation of its natural counterpart or visa versa that if the formula is the simulation of its natural counterpart, then the weights in nature is Fibonacci values.
3

Piano Quintet

Tan, Chee-Tick 05 1900 (has links)
The thesis is a traditional piano quintet in the manner of Bartok, incorporating compositional techniques such as golden ratio and using folk materials. Special effects on strings are limited for easy conversion to wind instruments. The piece is about 15 minutes long.
4

A razão áurea e a sequência de Fibonacci / The golden ratio and the Fibonacci sequence

Belini, Marcelo Manechine 16 September 2015 (has links)
O presente trabalho irá abordar dois temas matemáticos de diferentes contextos históricos mas que apresentam uma relação intrínseca com o número Φ, mais conhecido como número de ouro. Partiremos de uma breve descrição dos conjuntos numéricos N, Z, Q e algumas propriedades dos números racionais para, em seguida, deduzirmos os números irracionais Π e, enfim, os números reais R. Na sequência vamos trabalhar com dois problemas muito antigos: o primeiro aparece na coletânea de livros Os Elementos do matemático grego Euclides, 300 anos a.C., e diz respeito à divisão de um segmento em média e extrema razão e, o segundo, foi publicado no livro Liber Abaci do matemático italiano Leonardo Fibonacci, século XIII, e trata da reprodução de coelhos e a sequência a qual ela origina. Veremos que o número de ouro aparece em ambos os problemas e vem ao longo dos séculos desencadeando muitas teorias que tratam de padrões e beleza. Abordaremos situações do passado e do presente que fazem uso desses padrões, além de fenômenos da natureza. Também apresentaremos um conjunto de atividades para orientar professores do ensino médio de como trabalhar, numa perspectiva interdisciplinar com vários conteúdos da matemática, e o número Φ. / This work addresses two mathematical topics from different historical contexts but that have an intrinsic relationship with the number Φ, better known as the golden number. We start with a brief description of the numerical sets N, Z, Q and some properties of rational numbers, and then deduct the set of irrational numbers π and, finally, the set of real numbers R. In the sequence we work with two very old problems: the first appears in the collection of books The elements of the Greek mathematician Euclid, 300 years BC, and concerns the division of a segment in extreme and mean ratio, and the second, published in the book Liber Abaci of the Italian mathematician Leonardo Fibonacci, in the thirteenth century, and deals with the breeding of rabbits and the sequence which it originates. We will see that the golden number appears on both problems and has over the centuries triggering many theories dealing with standards and beauty. We discuss situations of past and present that makes use of these standards, as well as natural phenomena. We also present a set of activities to guide middle school teachers on how to work in an interdisciplinary perspective with various mathematical content, and the number Φ.
5

Verificação da proporção divina da face em pacientes totalmente dentados

Piccin, Marcia Regina 07 February 1997 (has links)
Orientador: Krunislave Antonio Nobilo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba / Made available in DSpace on 2018-07-21T23:45:22Z (GMT). No. of bitstreams: 1 Piccin_MarciaRegina_M.pdf: 1561219 bytes, checksum: a33dc6f96a29dc3881514e9f97cd0e1f (MD5) Previous issue date: 1997 / Resumo: Esta pesquisa foi realizada com a finalidade de verificar a presença da "Proporção Divina" nos segmentos da face, por meio do método fotográfico, em pacientes dentados. A "Proporção Divina" já era utilizada desde a Antiga Grécia por escultores e arquitetos na confecção de suas obras, tendo sido estudada durante o Renascimento. Esta Proporção está presente não apenas nas artes plásticas, como também na natureza. A amostra deste estudo constituiu-se de 121 indivíduos totalmente dentados, de raça branca, de ambos os sexos, cuja faixa etária variou entre 20 e 26 anos de idade. Os pacientes foram posicionados em um cefalostato de Broadbent no qual foram fotografados em norma lateral direita, na posição postural de repouso fisiológico. Sobre as fotografias foram realizadas mensuraçóes de três segmentos da face: A (distância entre os pontos faciais Lc e Sbn ) , B (distância entre os pontos faciais Sbn e St) , C (distância entre os pontos faciais St e Gn), por intermédio de um paquímetro de precisão. Tomando-se por base esses segmentos verificou-se, segundo a análise estatística pelo método de Teste de Hipótese, sua correlação com a "Proporção Divina", obedecendo à razão segundo a qual o segmento maior dividido pelo segmento menor seria igual à soma dos dois, dividido pelo segmento maior, resultando no "número divino" ou "áureo" : 1.618. Também investigou-se a presença da proporção sugerida por Willis (distância entre os pontos faciais Lc e St igual à distância entre os pontos faciais Sbn e Gn). O nível de significância adotado foi de 5%. ...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The aim of this research project is to verify the presence of the Divine Proportion in the facial parts of dentate patients by means of the photographic method. The Divine Proportion has been used since Ancient Greece by sculptors and architects in the making of their works and was studied during the Renaissance. This proportion is present not only in art but also in nature. The sample group of this study is composed of 121 dentate Caucasians, of both sexes and between 20 and 26 years old. The patients were set in a Broadbent cephalostat in which they were photographed on the right side norm, in resting position. Three facial fraction measurements were taken by means of a precision caliper: A (the distance between facial points Lc and Sbn), B (the distance between facial points Sbn and St), and C (the distance between facial points St and Gn). The presence of the Divine Proportion was ascertained, based on the statistical analysis of these fractions and following the reasoning that the" largest fraction divided by the smallest should be equal to their sum, which, when divided by the largest fraction, results in the Gold Number: 1.618. The presence of the Willis proportion (the distance between facial points Lc and St as equal to the distance between facial points Sbn and Gn) was also investigated. ... Note: The complete abstract is available with the full electronic digital thesis or dissertations / Mestrado / Fisiologia e Biofisica do Sistema Estomatognatico / Mestre em Odontologia
6

A razão áurea e a sequência de Fibonacci / The golden ratio and the Fibonacci sequence

Marcelo Manechine Belini 16 September 2015 (has links)
O presente trabalho irá abordar dois temas matemáticos de diferentes contextos históricos mas que apresentam uma relação intrínseca com o número Φ, mais conhecido como número de ouro. Partiremos de uma breve descrição dos conjuntos numéricos N, Z, Q e algumas propriedades dos números racionais para, em seguida, deduzirmos os números irracionais Π e, enfim, os números reais R. Na sequência vamos trabalhar com dois problemas muito antigos: o primeiro aparece na coletânea de livros Os Elementos do matemático grego Euclides, 300 anos a.C., e diz respeito à divisão de um segmento em média e extrema razão e, o segundo, foi publicado no livro Liber Abaci do matemático italiano Leonardo Fibonacci, século XIII, e trata da reprodução de coelhos e a sequência a qual ela origina. Veremos que o número de ouro aparece em ambos os problemas e vem ao longo dos séculos desencadeando muitas teorias que tratam de padrões e beleza. Abordaremos situações do passado e do presente que fazem uso desses padrões, além de fenômenos da natureza. Também apresentaremos um conjunto de atividades para orientar professores do ensino médio de como trabalhar, numa perspectiva interdisciplinar com vários conteúdos da matemática, e o número Φ. / This work addresses two mathematical topics from different historical contexts but that have an intrinsic relationship with the number Φ, better known as the golden number. We start with a brief description of the numerical sets N, Z, Q and some properties of rational numbers, and then deduct the set of irrational numbers π and, finally, the set of real numbers R. In the sequence we work with two very old problems: the first appears in the collection of books The elements of the Greek mathematician Euclid, 300 years BC, and concerns the division of a segment in extreme and mean ratio, and the second, published in the book Liber Abaci of the Italian mathematician Leonardo Fibonacci, in the thirteenth century, and deals with the breeding of rabbits and the sequence which it originates. We will see that the golden number appears on both problems and has over the centuries triggering many theories dealing with standards and beauty. We discuss situations of past and present that makes use of these standards, as well as natural phenomena. We also present a set of activities to guide middle school teachers on how to work in an interdisciplinary perspective with various mathematical content, and the number Φ.
7

The Golden Ratio and Fibonacci Sequence in Music

Blankenship, Ryan A. 04 May 2021 (has links)
No description available.
8

The Modern Domus: An Exploration of Roman Brick

Bixler, Kelsey Nicole 17 June 2015 (has links)
My thesis explores the potential manipulation of Roman brick using a Flemish bond, corner quoining, and barrel vaulting. The design uses this brick module to re-interpret the Ancient Roman domus, an urban residence embedded within the heart of the city. This classical inspiration is apparent in the tripartite plan and elevation as well as the use of the Golden Ratio, a classical proportioning system, incorporated throughout the design, revealed on both large and small scales. However, the emphasis of the project is on true brick construction, a process irrelevant to historical allusion. / Master of Architecture
9

O número de ouro e construções geométricas / The golden number and geometric constructions

Azevedo, Natália de Carvalho de 22 March 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-08-28T17:04:33Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Natalia.pdf: 3124110 bytes, checksum: f27af33101f254afa0e1e7bf7550914f (MD5) / Made available in DSpace on 2014-08-28T17:04:33Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Natalia.pdf: 3124110 bytes, checksum: f27af33101f254afa0e1e7bf7550914f (MD5) Previous issue date: 2013-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The golden number and its geometry remote from Ancient Greece. The golden number is a real number that can be represented geometrically by dividing a segment in extreme and mean ratio. It is related to the act of determining a point C on a segment AB in order to obtain equal ratios between AB : AC and AC : CB. Its value is obtained by numerical solution of the quadratic equation obtained from this equality. From ruler and compass constructions of the golden mean other geometric constructions are made: triangles, rectangles, pentagons and spirals. The golden number has been present in arts, architecture and nature for years, and it presented in this work as a tool for study, focusing on presentation to high school students. / O estudo do número de ouro e de sua geometria remotam desde a Grécia Antiga. O número de ouro é um número real que pode ser representado geometricamente por meio da divisão de um segmento em média e extrema razão. Trata-se de determinar um ponto C em um segmento AB, a fim de obter uma igualdade entre as razões AB : AC e AC : CB. O seu valor numérico é obtido por meio da solução da equação do segundo grau obtida a partir dessa igualdade. Com a construção com régua e compasso desse segmento áureo são feitas outras construções geométricas áureas: triângulos, retângulos, pentágonos e espirais. O número de ouro está presente na arte, na arquitetura, na natureza há anos e apresenta-se aqui como ferramenta para estudo e com enfoque para apresentação a alunos de Ensino Médio.
10

Fibonacci Vectors

Salter, Ena 20 July 2005 (has links)
By the n-th Fibonacci (respectively Lucas) vector of length m, we mean the vector whose components are the n-th through (n+m-1)-st Fibonacci (respectively Lucas) numbers. For arbitrary m, we express the dot product of any two Fibonacci vectors, any two Lucas vectors, and any Fibonacci vector and any Lucas vector in terms of the Fibonacci and Lucas numbers. We use these formulas to deduce a number of identities involving the Fibonacci and Lucas numbers.

Page generated in 0.1638 seconds