• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TRANSLATION AND REPETITION: AN ARCHITECTURAL TRANSLATION OF W.G. SEBALD'S THE RING OF SATURN

LASH, DANIEL JAMES 02 July 2004 (has links)
No description available.
2

Tidal Dissipation in Extrasolar Planets

Pena, Fernando Gabriel 01 September 2010 (has links)
Many known extra-solar giant planets lie close to their host stars. Around 60 have their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast majority of these close-in planets have low eccentricity orbits. This suggests that their orbits have been circularized likely due to tidal dissipation inside the planets. These exoplanets share with our own Jupiter at least one trait in common: when they are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal ``quality factor'', Q, of order 10^5. This parameter is the ratio between the energy in the tide and the energy dissipated per period. To explain this, a possible solution is resonantly forced internal oscillation. If the frequency of the tidal forcing happens to land on that of an internal eigenmode, this mode can be resonantly excited to a very large amplitude. The damping of such a mode inside the planet may explain the observed Q value. The only normal modes that fall in the frequency range of the tidal forcing (~ few days) are inertial modes, modes restored by the Coriolis force. We present a new numerical technique to solve for inertial modes in a convective, rotating sphere. This technique combines the use of an ellipsoidal coordinate system with a pseudo-spectral method to solve the partial differential equation that governs the inertial oscillations. We show that, this technique produces highly accurate solutions when the density profile is smooth. In particular, the lines of nodes are roughly parallel to the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate the resultant tidal dissipation for giant planets, and find that turbulent dissipation of inertial modes in planets with smooth density profiles do not give rise to dissipation as strong as the one observed. We also study inertial modes in density profiles that exhibit discontinuities, as some recent models of Jupiter show. We found that, in this case, our method could not produce convergent solutions for the inertial modes. Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by observing waves in its rings that may be excited by inertial modes inside Saturn.
3

Tidal Dissipation in Extrasolar Planets

Pena, Fernando Gabriel 01 September 2010 (has links)
Many known extra-solar giant planets lie close to their host stars. Around 60 have their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast majority of these close-in planets have low eccentricity orbits. This suggests that their orbits have been circularized likely due to tidal dissipation inside the planets. These exoplanets share with our own Jupiter at least one trait in common: when they are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal ``quality factor'', Q, of order 10^5. This parameter is the ratio between the energy in the tide and the energy dissipated per period. To explain this, a possible solution is resonantly forced internal oscillation. If the frequency of the tidal forcing happens to land on that of an internal eigenmode, this mode can be resonantly excited to a very large amplitude. The damping of such a mode inside the planet may explain the observed Q value. The only normal modes that fall in the frequency range of the tidal forcing (~ few days) are inertial modes, modes restored by the Coriolis force. We present a new numerical technique to solve for inertial modes in a convective, rotating sphere. This technique combines the use of an ellipsoidal coordinate system with a pseudo-spectral method to solve the partial differential equation that governs the inertial oscillations. We show that, this technique produces highly accurate solutions when the density profile is smooth. In particular, the lines of nodes are roughly parallel to the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate the resultant tidal dissipation for giant planets, and find that turbulent dissipation of inertial modes in planets with smooth density profiles do not give rise to dissipation as strong as the one observed. We also study inertial modes in density profiles that exhibit discontinuities, as some recent models of Jupiter show. We found that, in this case, our method could not produce convergent solutions for the inertial modes. Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by observing waves in its rings that may be excited by inertial modes inside Saturn.

Page generated in 0.0863 seconds