• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 60
  • 38
  • 30
  • 14
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 123
  • 122
  • 110
  • 93
  • 91
  • 90
  • 79
  • 77
  • 59
  • 53
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Création et caractérisation d'un matériau de construction composite incorporant un nouveau matériau à changement de phase solide-solide / Creation and characterization of a building material with a new solid-solid phase change material

Harle, Thibault 14 November 2016
Dans le cadre de la réduction des consommations d'énergies primaires des bâtiments, de nouveaux matériaux de constructions sont amenés à être développés. Les réglementations thermiques poussent les nouvelles constructions à être économes en énergie. Elles doivent aussi être moins impactantes sur l'environnement tout en garantissant le confort des occupants.Dans ce travail est présenté le développement d'un nouveau matériau de construction composite intégrant un matériau à changement de phase (MCP).Les MCP sont capables d'échanger passivement de l'énergie thermique avec leur environnement. Il permettent ainsi une régulation passive de la température intérieure.Suite à un état de l'art, sur les MCP et le plâtre, est présenté la synthèse et la caractérisation physico-chimique d'un nouveau MCP à transition solide-solide.L'incorporation du MCP préalablement synthétisé à un matériau de construction de type plâtre est ensuite développée. Le matériau composite ainsi obtenu est caractérisé thermiquement et mécaniquement.Dans un dernier temps des évaluations environnementales du MCP et du matériau composite sont réalisées. / In a context of reduction of energy consumption in buildings, new buildings materials are developed. Thermal regulations require energy efficiency to buildings. They must be less impacting on the environment while ensuring occupant comfort.In this work is presented the development of a new composite building material incorporating a phase change material.PCM are able to exchange passively heat energy with their environment. It thus allow a passive control of the interior temperature of buildings.After a state of the art on PCM and plaster, a part is dedicated to synthesis and physicochemical characterisation of a new solid/solid PCM. In a third part the incorporation of the PCM previously synthesized in plaster is then developped. The composite material is mechanically and thermally characterized.In a last time environmental assessments of the PCM and the composite material are performed.
112

Numerical Investigation on the Heat Transfer Enhancement Using Micro/Nano Phase-Change Particulate Flow

Xing, Keqiang 08 November 2007 (has links)
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.
113

Comparison of Sensible Water Cooling, Ice building, and Phase Change Material in Thermal Energy Storage Tank Charging: Analytical Models and Experimental Data

Caliguri, Ryan P. 04 October 2021 (has links)
No description available.
114

Fázové změny na povrchu tepelných výměníků s dutými vlákny / Phase Changes on Heat Exchanger Surfaces with Hollow Fibers

Kůdelová, Tereza January 2018 (has links)
The thesis focuses on the polymer hollow fibres heat exchangers. The main object of the research is the formation and process of condensation on the outer surface of fibres and the effect of phase change on the heat transfer. The study deals with the influence of the geometry of the heat exchnager on the heat transfer and the condensation process. Fatigue tests of polymeric hollow fibres exchangers are also part of the work. The work provides an overview of the possible use of such heat exchangers in industrial applications associated with condensation.
115

Modélisation multi échelle du comportement thermomécanique des bétons incluant des matériaux à changement de phase micro encapsulés / Multi-scale modeling of thermomechanical behavior of concrete embbemding microencapsulated phase change materials

Kodjo, Jérôme 09 January 2019 (has links)
Les matériaux à changement de phase (MCP) constituent une alternative prometteuse pour l'amélioration de l'inertie thermique des matériaux de construction. Grâce à leur chaleur latente, ces matériaux permettent de stocker des quantités importantes d'énergie thermique, ce qui permet de réduire la consommation d'énergie liée au chauffage et à la climatisation. Cependant, leur incorporation dans les matériaux cimentaires entraine une baisse de la résistance mécanique du nouveau matériau composite ainsi obtenu. Durant ces dernières décennies, les composites MCP/bétons ont suscité un grand intérêt conduisant à un grand nombre de travaux expérimentaux. Cependant, les modèles théoriques et numériques pour prédire les comportements de ces matériaux complexes sont aujourd'hui très peu développés en raison de la complexité du comportement thermique avec changement de phase, de la séparation d'échelle et de la difficulté que représente la prédiction de l'endommagement par fissuration à l'échelle des hétérogénéités microscopiques. L'objectif de cette thèse est précisément de développer des outils de modélisation numériques pour prédire le comportement thermomécanique effectif du matériau en vue de calculs de structures. Pour cela, des modèles numériques sont développés pour simuler le transfert de chaleur, le comportement mécanique, la fissuration ainsi que la fuite du MCP liquide à travers les fissures, à l'échelle d'un Volume Elémentaire Représentatif du matériau. Après avoir étudié les effets des changements de phase dans le MCP sur le comportement mécanique effectif, une approche multi-échelle (méthode EF²$) est proposée afin de réaliser des calculs de structures en tenant compte des phénomènes à l'échelle des micro capsules. Des caractérisations expérimentales thermo-physiques sont menées afin de prouver l'utilité des MCP dans les matériaux de construction et de faire des comparaisons avec les outils d'homogénéisation développés. Enfin, nous proposons une étude dans le but de comprendre et d'évaluer les effets du MCP dans la dégradation des propriétés mécaniques de ces nouveaux matériaux / A promising way to enhance thermal inertia of buildings is the use of phase change materials (PCMs). Thanks to their high latent heat, PCMs can be used to store a significant amount of thermal energy in order to reduce energy consumption related to air conditioning. However, their use leads to a decrease in the mechanical strength of the obtained composites. During the last decades, the incorporation of PCMs in concrete has been of great interest leading to many experimental works. However, theoretical and numerical models to predict the behavior of such complex materials are not developed so far, due to the complexity of the phase change behavior, the scale separation and issues associated to the damage which is mainly induced by microcracking at the scale of microstructural heterogeneities. The objective of this thesis is precisely to develop numerical modeling tools to predict the effective thermomechanical behavior of the material with aim of structural calculations. For this purpose, numerical tools based on microstructures at the scale of microencapsulated PCM are developed to simulate heat transfer, mechanical response, cracks propagation as well as leakage of liquid PCM through cracks. After studying the effects of phase changes in the PCM on the effective mechanical response of the composites, a multi-scale approach (FE² method) is proposed to carry out structural calculations taking into account phenomena at micro scale. Thermo-physical experimental characterizations are carried out to show the usefulness of PCMs in building materials and to make comparisons with the developed homogenization tools. Finally, we propose a study to understand and evaluate the effects of PCMs in the degradation of the mechanical properties of these new materials
116

Innovations in Modeling Cryogenic Propellant Phase Change for Long Duration Spaceflight

Praveen Srikanth (8082695) 05 December 2019 (has links)
Cryogenic propellants are going to be the cornerstone for effective future human space exploration. These propellants need to be stored and maintained at really low temperatures for a long duration. Accurate phase change modeling is necessary for characterizing the thermal state of future cryogenic propellant tanks and for designing systems to alleviate the self pressurization problem. Better understanding about how to properly store and manage cryogenic propellants would help greatly with In-Situ Resource Utilization (ISRU) strategies for future missions to Mars and further. Predicting the fluid flow, heat transfer, and phase change mass transfer in long term cryogenic storage using CFD models is greatly affected by our understanding of the accommodation coefficient. The kinetically limited phase change model governed by the Hertz-Knudsen-Schrage equation is the model of choice for such calculations. The value of the accommodation coefficient required for the model is unknown for cryogenic propellants. Even in the case of water, the value of the accommodation coefficient has been found to vary over three orders of magnitude based on 80 years of measurements. Experiments specifically built to study accommodation coefficient are needed to estimate the value of the accommodation coefficient and understand some of the uncertainties surrounding these models. <div><br></div><div>Two phase change models, viz. the thermally limited and the kinetically limited phase change model are implemented in OpenFOAM. Different approaches to implement the Hertz-Knudsen-Schrage equation in a sharp interface conjugate heat transfer solver are studied. Evaporation and condensation calculations for a liquid hydrogen meniscus inside an aluminum container are compared with experimental measurements. The effect of accommodation coefficient on phase change is then studied with the kinetically limited model by comparing with the thermally limited model and the experimental measurements. The uncertainties associated with the temperature and pressure measurements in the experiment are quantified to show their effect on computational predictions. Since cryogenic propellants are perfectly wetting fluids, modeling the thin-film region close to the contact line leads to a multi-scale computational problem. However, the phase change contribution from the thin-film region is approximated in these computations to show the importance of modeling the contact line region accurately to adequately capture the small local thermodynamics in that region.</div>
117

Nanopatterning of Phase Change Material Ge2SbTe5 towards Novel and Improved Reconfigurable Photonic Devices

Burrow, Joshua A. January 2021 (has links)
No description available.
118

Phase Change Materials for Optoelectronic Devices and Memories: Characterization and Implementation

Sevison, Gary A. 06 January 2022 (has links)
No description available.
119

THERMAL ENERGY STORAGE WITH MULTIPLE FAMILIES OF PHASE CHANGE MATERIALS (PCM)

Elsanusi, Omer 01 September 2020 (has links)
The world is facing a major challenge when it comes to proper energy utilization. The increasing energy demand, the depleting fossil fuel resources and the growing environmental and ecological concerns are factors that drive the need for creative solutions. Renewable energy resources such as solar sit in the center of these solutions. Due to their intermittent nature, development of energy storage systems is crucial. This dissertation focused on the latent thermal energy storage systems that incorporate phase change materials (PCM). The main goal was to enhance the heat transfer rates in these systems to address the low melting (energy storage stage) and solidification (recovery stage) rates that are caused by the PCMs’ low thermal conductivity values. The application of multiple PCMs (m-PCMs) with varying melting temperatures in several arrangements was investigated. The effects of applying m-PCMs on the conduction heat transfer and on the natural convection heat transfer in both horizontally and vertically oriented heat exchangers were studied. This was followed by an optimization study of the PCMs’ melting temperatures and the working fluid flow rate. Further heat transfer enhancement using metal fins was also investigated. Numerical models were developed and validated. Results are reported and discussed. Significant enhancement in both complete melting time and energy storage capacity was obtained by the m-PCMs in series arrangement. This enhancement is more pronounced in the vertically oriented system. The working fluid flow rate was found to have a limited effect during the melting stage. However, it seems to be crucial in the solidification stage.
120

Nanopatterned Phase Change Material for Mid-Infrared Tunable Optical Filters using Germanium Antimony Telluride

Morden, Dylan Jesse January 2021 (has links)
No description available.

Page generated in 0.3675 seconds