• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 60
  • 38
  • 30
  • 14
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 370
  • 121
  • 121
  • 108
  • 92
  • 90
  • 90
  • 79
  • 77
  • 59
  • 51
  • 36
  • 35
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Low Energy Photon Detection

Guo, Tianyi 01 January 2023 (has links) (PDF)
Detecting long wave infrared (LWIR) light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. In the realm of contemporary LWIR detectors, they can be broadly classified into two categories: cooled and uncooled detectors. Cooled detectors, such as MCT detectors, excel in terms of high detectivity and fast response times. However, their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications. In contrast, uncooled detectors, exemplified by microbolometers, are capable of functioning at room temperature and come at a relatively lower cost. Nonetheless, they exhibit somewhat lower detectivity and slower response times. Within the scope of this work, I will showcase two innovative approaches aimed at advancing the next generation of LWIR detectors. These approaches are designed to offer high detectivity, swift response times, and room temperature operation. The first approach involves harnessing Dirac plasmon and the Seebeck effect in graphene to create a photo-thermoelectric detector. In addition, I will introduce the application of scanning near-field microscopy for revealing the plasmons generated in graphene, employing both imaging and spectroscopy techniques. The second approach entails the use of an oscillating circuit integrated with phase change materials and the modulation of frequency induced by infrared illumination to achieve LWIR detection. Finally, I will present the progress made in integrating graphene-based detectors in this work onto readout circuits to enable the development of dense pixel focal plane array.
42

Thermal Detection Of Biomarkers Using Phase Change Nanoparticles

Wang, Chaoming 01 January 2010 (has links)
Most of existing techniques cannot be used to detect molecular biomarkers (i.e., protein and DNA) contained in complex body fluids due to issues such as enzyme inhibition or signal interference. This thesis describes a nanoparticle-based thermal detection method for the highly sensitive detections of multiple DNA biomarkers or proteins contained in different type of fluids such as buffer solution, cell lysate and milk by using solid-liquid phase change nanoparticles as thermal barcodes. Besides, this method has also been applied for thrombin detection by using RNA aptamer-functionalized phase change nanoparticles as thermal probes. Furthermore, using nanostructured Si surface that have higher specific area can enhance the detection sensitivity by four times compared to use flat aluminum surfaces. The detection is based on the principle that the temperature of solid will not rise above its melting temperature unless all solid is molten, thus nanoparticles will have sharp melting peak during a linear thermal scan process. A one-to-one correspondence can be created between one type of nanoparticles and one type of biomarker, and multiple biomarkers can be detected simultaneously using different type nanoparticles. The melting temperature and the heat flow reflect the type and the concentration of biomarker, respectively. The melting temperatures of nanoparticles are designed to be over 100°C to avoid interference from species contained in fluids. The use of thermal nanoparticles allows detection of multiple low concentration DNAs or proteins in a complex fluid such as cell lysate regardless of the color, salt concentration, and conductivity of the sample.
43

Testing of Carbon Foam with a Phase Change Material for Thermal Energy Storage

Irwin, Matthew A. 24 September 2014 (has links)
No description available.
44

Enhanced Metamaterials for Reconfigurable mm-Wave and THz Systems

Sanphuang, Varittha 30 September 2016 (has links)
No description available.
45

STUDY OF FULLY-MIXED HYBRID THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIALS FOR SOLAR HEATING APPLICATIONS

Abdelsalam, Mohamed 11 1900 (has links)
A novel design of hybrid thermal energy storage (HTES) using Phase Change Material (PCM) was evaluated using a mathematical model. Both single and multi-tank (cascaded) storage were explored to span small to large-scale applications (200-1600 litres). The storage element was based on the concept of a fully-mixed modular tank which is charged and discharged indirectly using two immersed coil heat exchangers situated at the bottom and top of the tank. A three-node model was developed to simulate different thermal behaviors during the operation of the storage element. Experiments were conducted on full-scale 200-l single-tank sensible heat storage (SHS) and hybrid thermal energy storage (HTES) to provide validation for the mathematical model. The HTES incorporated rectangular PCM modules submerged in the water tank. Satisfactory agreement was found between the numerical results and the experimental results obtained by Mather (2000) on single and multi-tank SHS. In addition, good agreement was noticed with the experiments performed by the author on single-tank SHS and HTES at McMaster University. The developed model was found to provide high levels of accuracy in simulating different operation conditions of the proposed design of storage element as well as computational efficiency. A parametric study was undertaken to investigate the potential benefits of the HTES over the SHS, operating under idealistic conditions. The HTES can perform at least two times better than the SHS with the same volume. The PCM volume fraction, melting temperature and properties were found to have critical impact on the storage gains of the HTES. All the parameters must be adjusted such that: (1) the thermal resistance of the storage element is minimized, and (2) most of the energy exchange with the storage element takes place in the latent heat form. The performance of the single-tank HTES was evaluated numerically while operating in a solar thermal domestic hot water (DHW) system for a single-family residence. The PCM parameters were selected to maximize the solar fraction during the operation on a typical spring day in Toronto. The use of the HTES can reduce the tank volume by 50% compared to the matched size of the SHS tank. However, the HTES was found to underperform the SHS when the system was operated in different days with different solar irradiation intensities. The effect of different draw patterns was also investigated. The results indicated that thermal storage is needed only when the energy demand is out-of-phase with the energy supply. For the same daily hot water demand, different consumption profiles; ex. dominant morning, dominant evening, dominant night and dispersed consumptions, showed slight impact on the performance of the system. The concept of multi-tank (cascaded) HTES storage was explored for medium/large scale solar heating applications such as for restaurants, motels, and multi-family residences. The design was based on the series connection of modular tanks through the bottom and top heat exchangers. Each individual tank had a PCM with different melting temperature. The results showed that the cascaded storage system outperformed the single-tank system with the same total volume as a result of the high levels of sequential or tank-to-tank stratification. The use of the cascaded HTES resulted in slight improvement in the solar fraction of the system. / Thesis / Doctor of Philosophy (PhD)
46

Development of a Self-Calibrating MEMS Pressure Sensor Using a Liquid-to-Vapor Phase Change

Mouring, Scott William 16 August 2021 (has links)
A growing industry demand for smart pressure sensors that can be quickly calibrated to compensate for sensor drift, nonlinearity effects, and hysteresis without the need for expensive equipment has led to the development of a self-calibrating pressure sensor. Pressure sensor inaccuracies are often resolved with sensor calibration, which typically requires the use of laboratory equipment that can produce a known, standard pressure to actuate the sensor. The developed MEMS-based, self-calibrating pressure sensor is a piezoresistive-type sensor with a sensing element made from a silicon on insulator (SOI) wafer using deep reactive-ion etching to create a hollow reference cavity. Using a micro-heater to heat the small, air-filled reference cavity of the sensing element, a standard pressure is generated to actuate the sensor's pressure-sensitive membrane, creating a self-calibration effect. Previous work focused on modeling and improving the thermal performance of the sensor identified potential solutions to extend the sensor's calibration and operating range without increasing the micro-heater's power consumption. This report focuses on using a water liquid-to-vapor phase change inside the sensor's reference cavity to increase the sensor's effective range and response time without increasing power demands. A combination of Ansys Fluent CFD modeling and benchtop experiments were used to guide the development of the two-phase, self-calibrating pressure sensor. A two-phase benchtop testing rig was built to demonstrate the anticipated effects of a liquid-to-vapor phase change in a closed domain and to provide experimental data to anchor CFD models. Due to the complexity of modeling a phase-change within a closed domain with Ansys Fluent R21.1, the CFD modeling was performed in two stages. First, the two-phase benchtop rig was modeled, and validated using benchtop test data to verify the Volume of Fluid multiphase model setup in Ansys Fluent. Then, a 2D Ansys Fluent model of the self-calibrating pressure sensor's reference cavity using the validated multiphase model was made, demonstrating the potential temperature, pressure, and density gradients inside the reference cavity at steady state. Using the guidance from the benchtop testing and CFD modeling, a prototype two-phase, self-calibrating pressure sensor was fabricated with a water volume fraction of at least 0.1 in the reference cavity. Testing the prototype two-phase sensor showed that the addition of a water liquid-to-vapor phase change inside the sensor's reference cavity can nearly triple the sensor's effective range of operation and self-calibration without increasing the power consumption of the cavity micro-heater. / Master of Science / Highly sensitive pressure sensors are essential to many modern engineering applications. For a pressure sensor to be accurate and functional, it must be properly calibrated with a known, standard pressure range that overlaps with the sensor's intended operating range. Mechanical wear, material aging, and thermal effects all reduce a pressure sensor's accuracy over time, requiring recalibration which often involves expensive equipment and long downtimes. To eliminate the need for additional equipment and the removal of the pressure sensor from its use-site for calibration, the authors have developed a pressure sensor capable of self-calibration. The self-calibrating sensor uses a MEMS sensing element with an integrated micro-actuator in the form of a small heating element to create the standard pressure range necessary for calibration. Previous work focused on modeling the thermal performance of the sensor identified potential solutions to extend the sensor's calibration and operating range without increasing the micro-heater's power consumption. This report focuses on using a water liquid-to-vapor phase change inside the sensor's reference cavity to increase the sensor's effective range and response time without increasing power demands. To help guide the development of the two-phase, self-calibrating sensor, a benchtop testing rig and CFD model were used to examine the effects of heating a liquid inside of a closed domain. A 2D CFD model of the sensor's reference cavity was also used to provide insight into the expected temperature and pressure gradients inside the sensing element after heating with the micro-actuator. Using the guidance from the CFD models, a prototype two-phase, self-calibrating pressure sensor was fabricated. Testing the prototype two-phase sensor showed that the addition of a water liquid-to-vapor phase change inside the sensor's reference cavity can nearly triple the sensor's effective range of operation and self-calibration without increasing the power consumption of the cavity micro-heater.
47

A reliable, secure phase-change memory as a main memory

Seong, Nak Hee 07 August 2012 (has links)
The main objective of this research is to provide an efficient and reliable method for using multi-level cell (MLC) phase-change memory (PCM) as a main memory. As DRAM scaling approaches the physical limit, alternative memory technologies are being explored for future computing systems. Among them, PCM is the most mature with announced commercial products for NOR flash replacement. Its fast access latency and scalability have led researchers to investigate PCM as a feasible candidate for DRAM replacement. Moreover, the multi-level potential of PCM cells can enhance the scalability by increasing the number of bits stored in a cell. However, the two major challenges for adopting MLC PCM are the limited write endurance cycle and the resistance drift issue. To alleviate the negative impact of the limited write endurance cycle, this thesis first introduces a secure wear-leveling scheme called Security Refresh. In the study, this thesis argues that a PCM design not only has to consider normal wear-out under normal application behavior, most importantly, it must take the worst-case scenario into account with the presence of malicious exploits and a compromised OS to address the durability and security issues simultaneously. Security Refresh can avoid information leak by constantly migrating their physical locations inside the PCM, obfuscating the actual data placement from users and system software. In addition to the secure wear-leveling scheme, this thesis also proposes SAFER, a hardware-efficient multi-bit stuck-at-fault error recovery scheme which can function in conjunction with existing wear-leveling techniques. The limited write endurance leads to wear-out related permanent failures, and furthermore, technology scaling increases the variation in cell lifetime resulting in early failures of many cells. SAFER exploits the key attribute that a failed cell with a stuck-at value is still readable, making it possible to continue to use the failed cell to store data; thereby reducing the hardware overhead for error recovery. Another approach that this thesis proposes to address the lower write endurance is a hybrid phase-change memory architecture that can dynamically classify, detect, and isolate frequent writes from accessing the phase-change memory. This proposed architecture employs a small SRAM-based Isolation Cache with a detection mechanism based on a multi-dimensional Bloom filter and a binary classifier. The techniques are orthogonal to and can be combined with other wear-out management schemes to obtain a synergistic result. Lastly, this thesis quantitatively studies the current art for MLC PCM in dealing with the resistance drift problem and shows that the previous techniques such as scrubbing or error correction schemes are incapable of providing sufficient level of reliability. Then, this thesis proposes tri-level-cell (3LC) PCM and demonstrates that 3LC PCM can be a viable solution to achieve the soft error rate of DRAM and the performance of single-level-cell PCM.
48

Phase Change Materials for Thermal Management in Thermal Energy Storage Applications

January 2020 (has links)
abstract: Thermal Energy Storage (TES) is of great significance for many engineering applications as it allows surplus thermal energy to be stored and reused later, bridging the gap between requirement and energy use. Phase change materials (PCMs) are latent heat-based TES which have the ability to store and release heat through phase transition processes over a relatively narrow temperature range. PCMs have a wide range of operating temperatures and therefore can be used in various applications such as stand-alone heat storage in a renewable energy system, thermal storage in buildings, water heating systems, etc. In this dissertation, various PCMs are incorporated and investigated numerically and experimentally with different applications namely a thermochemical metal hydride (MH) storage system and thermal storage in buildings. In the second chapter, a new design consisting of an MH reactor encircled by a cylindrical sandwich bed packed with PCM is proposed. The role of the PCM is to store the heat released by the MH reactor during the hydrogenation process and reuse it later in the subsequent dehydrogenation process. In such a system, the exothermic and endothermic processes of the MH reactor can be utilized effectively by enhancing the thermal exchange between the MH reactor and the PCM bed. Similarly, in the third chapter, a novel design that integrates the MH reactor with cascaded PCM beds is proposed. In this design, two different types of PCMs with different melting temperatures and enthalpies are arranged in series to improve the heat transfer rate and consequently shorten the time duration of the hydrogenation and dehydrogenation processes. The performance of the new designs (in chapters 2 and 3) is investigated numerically and compared with the conventional designs in the literature. The results indicate that the new designs can significantly enhance the time duration of MH reaction (up to 87%). In the fourth chapter, organic coconut oil PCM (co-oil PCM) is explored experimentally and numerically for the first time as a thermal management tool in building applications. The results show that co-oil PCM can be a promising solution to improve the indoor thermal environment in semi-arid regions. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2020
49

Investigations of Phase Change Memory Properties of Selenium Doped GeTe and Ge2Sb2Te5

Vinod, E M January 2013 (has links) (PDF)
GeTe and Ge2Sb2Te5 alloys are potential candidates for non-volatile phase change random access memories (PCRAM). For electrical data storage applications the materials should have stable amorphous and crystalline phases, fast crystallization time, low power to switch, and high crystallization activation energy (to be stable at normal operating temperatures). Phase change memories can be tuned through compositional variations to achieve sufficient phase change contrast and thermal stability for data retention. Selenium is one of the attractive choices to use as an additive material owing to its flexible amorphous structure and a variety of possible applications in optoelectronics and solar cells. GeSb2Te3Se alloy, in which 25 at.% of Se substituted for Te, show a higher room temperature resistance with respect to parent GeSb2Te4 alloy, but the transition temperature is lowered which will affect the thermal stability. The RESET current observed for Sb65Se35 alloys were reduced and the crystallization speed increased 25 % faster with respect to Ge2Sb2Te5. Alloys of Ga-Sb-Se possess advantages such as higher crystallization temperatures, better data retention, higher switching speed, lower thermal conductivity and lower melting point than the GST, but the resistance ratio is limited to about two orders of magnitude. This affects the resistance contrast and data readability. It is with this background a study has been carried out in GeTe and GeSbTe system with Se doping. Studies on structural, thermal and optical properties of these materials all through the phase transition temperatures would be helpful to explore the feasibility of phase change memory uses. Thin films along with their bulk counterparts such as (GeTe)1-x Sex ( 0 < x ≤ 0.50) and (GST)1-xSex (0 < x ≤ 0.50), including GeTe and GST alloys, have been prepared. The results are presented in four chapters apart from the Introduction and Experimental techniques chapters. The final chapter summarizes the results. Chapter 1 provides an introduction to chalcogenide glasses, phase change memory materials and their applications. The fundamental properties of amorphous solids, basic phase change properties of Ge2Sb2Te5 and GeTe alloys and their applications are presented in detail. Various doping studies on GeTe and Ge2Sb2Te5 reported in literatures are reviewed. The limitations, challenges, future and scope of the present work are presented. In chapter 2, the experimental techniques used for thin film preparation, electrical characterizations, optical characterization and surface characterizations etc. are explained. Chapter 3 deals entirely on Ge2Sb2Te5 films studied throughout the phase transition, by annealing at different temperatures. Changes in sheet resistance, optical transmission, morphology and surface bonding characteristics are analyzed. The crystallization leads to an increase of roughness and the resistance changes to three orders of magnitude at 125 oC. Optical studies show distinct changes in transmittance during phase transitions and the optical parameters are calculated. Band gap contrast and disorder variation with annealing temperatures are explained. The surface bonding characteristics studied by XPS show Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases. The temperature dependent modifications of the band structure of amorphous GST films at low temperatures have been little explored. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature 300 K. Other optical parameters like Urbach energy and B1/2 are studied at different temperatures and are evaluated. The observed changes in optical band gap (Eopt) are fitted to Fan’s one phonon approximation, from which a phonon energy (ћω) corresponding to a frequency of 3.59 THz resulted. The frequency of 3.66 THz optical phonons has already been reported by coherent phonon spectroscopy experiment in amorphous GST. This opens up an indirect method of calculating the phonon frequency of the amorphous phase change materials. Chapter 4 constitutes comparison of optical, electrical and structural investigation of GST and (GST)1-xSex films. It is well known that GST alloys have vacancy in their structure, which leads to the possibility of switching between the amorphous and crystalline states with minimum damage. Added Se may occupy the vacancy or change the bonding characteristics which intern may manifest in the possibility of change in optical and electrical parameters. The structural studies show a direct amorphous to hexagonal transition in (GST)1-xSex, where x ≥ 0.10 at.%. Raman spectra of the as deposited and annealed (GST)1-xSex films show structural modifications. The infrared transmission spectra indicate a shift in absorption edges from low to high photon energy when Se concentration increases in GST. Band gap values calculated from Tauc plot show the band gap increment with Se doping. It is noted that a small amount of Se doping increases the resistance of the amorphous and crystalline phases and maintains the same orders of resistance contrast. This will be beneficial as it improves the thermal stability and reduces the write current in a device. Switching studies show an increasing threshold voltage as the Se doping concentration increases. Chapter 5 comprises compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations. The XRD investigations on bulk (GeTe)1-xSex (x = 0.0, 0.02, 0.10, 0.20 and 0.50 at.%) alloys show that the crystalline structure of GeTe alloys does not affect ≤ 0.20 at.% of Se concentration. With increasing amount of Se concentration the alloys gets modified in to a homogeneous amorphous structure. This result has been verified from the XRD, Raman, XPS, SEM and DSC measurements. The possibility that Se occupying the Ge vacancy sites in GeTe structure is explained. Since Se is an easy glass former, the amorphousness increases in the alloys due to new amorphous phases formed by the Se with other elements. It is shown from Raman and XPS analysis that the Ge-Te bonds exists up to Se 0.20 at.% alloys. Ge-Se and GeTe2 bonds are increasing with increasing Se at.%. Melting temperature has found decreases and the reduction in melting point may reduces the RESET current. Further studies on switching behavior may bring out its usefulness. Chapter 6 deals with studies on (GeTe)1-xSex films for phase change memory applications based on the insight received from their bulk study. Even at low at.% addition of Se makes the as prepared (GeTe)1-xSex film amorphous. At 200 oC, GeTe crystalline structure is evolved and the intensity of the peaks reduces in the alloys with increase of Se content. At 300 oC, more evolved GeTe crystalline structure is seen compared to 200 oC annealed films whereas 0.20 at.% Se alloy remain amorphous. Resistance and thermal studies shows increase in crystallization temperature. It is expected that Se sits in the vacancies of the GeTe crystalline structural formation. This may also account for the increased threshold voltages with increasing Se doping. The band gap increase with increase of Se at.% signifying the possibility of band gap tuning in the material. Possible explanation for the increased order in GeTe due to Se doping is presented. The modifications in the alloy with Se addition can be explained with the help of chemical bond energy approach. Those bonds having higher energy leads to increased average bond energy of the system and hence the band gap. The XPS core level spectra and Raman spectra investigation clearly shows the GeTe bonds are replaced by Ge-Se bonds and GeTe2 bonds. The 0.10 at.% Se alloy is found to have a higher thermal stability in the amorphous state and maintains a gigantic resistance contrast compared to other Se concentration alloys. This alloy can be considered as an ideal candidate for multilevel PCM applications. Chapter 7 summarizes the major findings from this work and the scope for future work.
50

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers. Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime. Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage. The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application. Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range. The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology. Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English

Page generated in 0.1549 seconds