• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 17
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 242
  • 242
  • 83
  • 80
  • 58
  • 51
  • 39
  • 35
  • 34
  • 34
  • 30
  • 30
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Improving the performance of internal combustion engines through lubricant engineering

Taylor, Oliver January 2016 (has links)
Low friction lubricant development provides a worthwhile contribution to vehicle CO<sub>2</sub> emission reduction. Conventional low friction lubricant development focuses on empirical processes using out dated engine technology and old test methods. This strategy is inefficient and restricts the lubricant's potential. A new method proposed in the present research combines tribological simulations with rig, engine and vehicle tests. This approach provides insights undocumented until now. The contribution to CO<sub>2</sub> emission reduction from individual engine components on vehicle drive cycles that include warm-up is predicted using lubricants down to the new SAE 8 viscosity grade. A bearing model is used to design the lubricant's non Newtonian characteristics to achieve friction reduction. An isoviscous lubricant with a viscosity of 4.6 cSt is shown to achieve the minimum friction in the bearing. The research shows that by starting with lubricants having kinematic viscosities higher than this value, it is possible to improve lubricant performance by lowering viscosity index (VI), introducing shear thinning, or reducing the density and pressure viscosity coefficient. Conversely, for lubricants with lower starting viscosities it is shown that higher VI values, more shear-stable lubricants and higher densities and pressure viscosity coefficients are required. The model predicts that high oil film pressures occur in the bearing and cause significant local lubricant viscosity increase (300&percnt;), indicating that the lubricant's pressure viscosity behaviour is important here, despite the contact being conformal. Simulation and motored engine testing establishes lubricant behaviour in the piston-to-bore conjunction. This analysis identifies a poor correlation between measured and predicted values at low engine speeds. A rig-on-liner tribometer shows that this error is attributable to a deficiency in the simulation's characterisation of boundary regime friction. An oil pump test determines how a modern variable displacement oil pump (and its control system) responds to lowering viscosity. The hypothesis that low viscosity lubricants cause the parasitic load from this component to increase is disproven using this component-level rig test. Chassis dynamometer testing compares the CO<sub>2</sub> reduction performance of lubricant thermal management systems to the values achieved by reducing the viscosity grade. CO<sub>2</sub> reductions of between 0.4&percnt; and 1.0&percnt; are identified using a cold-start new European drive cycle (NEDC) with a 5W-30 preheated to 60&deg;C and 90&deg;C respectively. Reductions in CO<sub>2</sub> emissions between 0.4&percnt; and 1.2&percnt; are found on the NEDC by lowering the oil fill volume from 5.1 L to 2.1 L. For the unmodified case, a 3.7&percnt; reduction in CO<sub>2</sub> emissions is reported by reducing the viscosity grade from a 5W 30 to an SAE 8 in the NEDC. The performance of a novel external oil reservoir is simulated to understand its ability to retain oil temperature during the vehicle cool-down procedure. An oil temperature of 65&deg;C at the end of the soak period (following a prior test where the oil was assumed to reach 90&deg;C) is predicted by installing insulation to the reservoir and indicates that a viable method to achieve the CO<sub>2</sub> benefits identified through lubricant preheating tests exists. A full vehicle model combines the outputs from each of these sub-models to predict lubricant performance on the NEDC the new World-wide harmonized light duty test cycle (WLTC). This new approach provides a tool that enables next generation low friction lubricants to be developed. The model predicts that an SAE 8 lubricant can reduce CO2 emissions by 2.8&percnt; on the NEDC and 1.9&percnt; on the WLTC compared to a 5W-30. A theoretical experiment, where all lubricant related friction was deleted from the simulation, predicts that lubricant-related CO<sub>2</sub> emissions are 8.7&percnt; on the NEDC and reduce to 6.3&percnt; on the WLTC. These results indicate that the planned adoption of the WLTC in September 2017 reduces the potential contribution to CO<sub>2</sub> emission reduction from lubricants by 28&percnt;.
22

Analysis of Heat Dissipation in AlGaN/GaN HEMT with GaN Micropits at GaN-SiC Interface

January 2016 (has links)
abstract: Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice for RF applications. However, a very high temperature in the active region of the GaN HEMT leads to a significant degradation of the device performance by effecting carrier mobility and concentration. Thus, thermal management in GaN HEMT in an effective manner is key to this technology to reach its full potential. In this thesis, an electro-thermal model of an AlGaN/GaN HEMT on a SiC substrate is simulated using Silvaco (Atlas) TCAD tools. Output characteristics, current density and heat flow at the GaN-SiC interface are key areas of analysis in this work. The electrical characteristics show a sharp drop in drain currents for higher drain voltages. Temperature profile across the device is observed. At the interface of GaN-SiC, there is a sharp drop in temperature indicating a thermal resistance at this interface. Adding to the existing heat in the device, this difference heat is reflected back into the device, further increasing the temperatures in the active region. Structural changes such as GaN micropits, were introduced at the GaN-SiC interface along the length of the device, to make the heat flow smooth rather than discontinuous. With changing dimensions of these micropits, various combinations were tried to reduce the temperature and enhance the device performance. These GaN micropits gave effective results by reducing heat in active region, by spreading out the heat on to the sides of the device rather than just concentrating right below the hot spot. It also helped by allowing a smooth flow of heat at the GaN-SiC interface. There was an increased peak current density in the active region of the device contributing to improved electrical characteristics. In the end, importance of thermal management in these high temperature devices is discussed along with future prospects and a conclusion of this thesis. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2016
23

Comprehensive Model-Based Design and Analysis Approach for Thermal Management Systems in Hybridized Vehicles

January 2017 (has links)
abstract: This research effort focuses on thermal management system (TMS) design for a high-performance, Plug-in Hybrid Electric Vehicle (PHEV). The thermal performance for various components in an electrified powertrain is investigated using a 3D finite difference model for a complete vehicle system, including inherently temperature-sensitive components. The components include the electric motor (EM), power electronics, Energy Storage System (ESS), and Internal Combustion Engine (ICE). A model-based design approach is utilized, where a combination of experimental work and simulation are integrated. After defining heat sources and heat sinks within the power train system, temporal and spatial boundary conditions were extracted experimentally to facilitate the 3D simulation under different road-load scenarios. Material properties, surface conditions, and environmental factors were defined for the geometrical surface mesh representation of the system. Meanwhile the finite differencing code handles the heat transfer phenomena via conduction and radiation, all convective heat transfer mode within the powertrain are defined using fluid nodes and fluid streams within the powertrain. Conclusions are drawn through correlating experimental results to the outcome from the thermal model. The outcome from this research effort is a 3D thermal performance predictive tool that can be utilized in order to evaluate the design of advanced thermal management systems (TMSs) for alternative powertrains in early design/concept stages of the development process. For future work, it is recommended that a full validation of the 3D thermal model be completed. Subsequently, design improvements can be made to the TMS. Some possible improvements include analysis and evaluation of shielding of the catalytic converter, exhaust manifold, and power electronics, as well as substituting for material with better thermal performance in other temperature-sensitive components, where applicable. The result of this improvement in design would be achieving an effective TMS for a high-performance PHEV. / Dissertation/Thesis / Masters Thesis Engineering 2017
24

Rankine Cycle Investigation on Meeting Power and Thermal Requirements of High-Speed Aircraft

Spark, Jacob J. 15 June 2023 (has links)
No description available.
25

The Importance of Electric Motor Thermal Management and the Role of Polymer Composites in Axial Cooling

Rhebergen, Cody 11 1900 (has links)
The following research investigates the effect that axial cooling channels will have on the performance of the thermal management system of a hypothetical switched reluctance motor. A baseline motor with no axial cooling will be compared to an identical motor with the innovative cooling design implemented. This will allow for a direct comparison of the two designs, with a quantifiable performance increase determined through thermal simulations. The ability of a polymer composite to transfer heat to the axial cooling channel is also explored. A detailed material selection process is discussed with the result being an epoxy polymer composite. The material development of a thermally enhanced polymer composite is then investigated to achieve a maximum thermal conductivity material that can exist within the stator slot to achieve enhanced thermal energy transfer. / Thesis / Master of Applied Science (MASc) / The desire to increase the power density of electric machines is becoming an increasingly popular challenge, especially in the automotive industry. With the advent of electrified powertrains as an alternative solution to conventional internal combustion powered vehicles, the topic of increasing electric motor performance is becoming very attractive area of research. An important aspect of electric motor performance is the way in which the generated thermal energy is managed. Through material development and innovative motor design, there exists the opportunity to cool electric motors through cooling paths flowing axially through the stator. This ‘axial cooling’ design has the opportunity to greatly increase motor cooling by removing thermal energy directly from its main source, the motor windings. The following research is aimed at the thermal design of the axial cooling and the role in which thermally conductive polymer composites play in order to enhance motor cooling.
26

Chemical Vapor Deposition of Silicon Oxycarbide Catalyzed Graphene Networks

Garman, Paul Douglas 18 September 2018 (has links)
No description available.
27

The Effect of Variable Gravity on the Cooling Performance of a Partially-Confined FC-72 Spray

Michalak, Travis Edward 29 June 2009 (has links)
No description available.
28

ALTERNATIVE ENERGY TESTBED ELECTRIC VEHICLE AND THERMAL MANAGEMENT SYSTEM INVESTIGATION

Gregg, Christopher B. 27 September 2007 (has links)
No description available.
29

Thermal prediction of convective-radiative porous fin heatsink of functionally graded material using adomian decomposition method

Oguntala, George A., Sobamowo, G., Ahmed, Y., Abd-Alhameed, Raed 24 March 2019 (has links)
Yes / In recent times, the subject of effective cooling have become an interesting research topic for electronic and mechanical engineers due to the increased miniaturization trend in modern electronic systems. However, fins are useful for cooling various low and high power electronic systems. For improved thermal management of electronic systems, porous fins of functionally graded materials (FGM) have been identified as a viable candidate to enhance cooling. The present study presents an analysis of a convective–radiative porous fin of FGM. For theoretical investigations, the thermal property of the functionally graded material is assumed to follow linear and power-law functions. In this study, we investigated the effects of inhomogeneity index of FGM, convective and radiative variables on the thermal performance of the porous heatsink. The results of the present study show that an increase in the inhomogeneity index of FGM, convective and radiative parameter improves fin efficiency. Moreover, the rate of heat transfer in longitudinal FGM fin increases as b increases. The temperature prediction using the Adomian decomposition method is in excellent agreement with other analytical and method.
30

Comparison of Heat Exchanger Designs for Aircraft Thermal Management  Systems

Reed, William Cody 02 September 2015 (has links)
Thermal management has become a major concern in the design of current and future more and all electric aircraft (M/AEA). With ever increasing numbers of on-board heat sources, higher heat loads, limited and even decreasing numbers of heat sinks, integration of advanced intelligence, surveillance and reconnaissance (ISR) and directed energy weapons, requirements for survivability, the use of composite materials, etc., existing thermal management systems and their components have been pushed to the limit. To address this issue, more efficient methods of thermal management must be implemented to ensure that these new M/AEA aircraft do not overheat and prematurely abort their missions. Crucial to this effort is the need to consider advanced heat exchanger concepts, comparing their designs and performance with those of the conventional compact exchangers currently used on-board aircraft thermal management systems. As a step in this direction, the work presented in this thesis identifies two promising advanced heat exchanger concepts, namely, microchannel and phase change heat exchangers. Detailed conceptual design and performance models for these as well as for a conventional plate-fin compact heat exchanger are developed and their design and performance optimized relative to the criterion of minimum dry weight. Results for these optimizations are presented, comparisons made, conclusions drawn, and recommendations made for future research. These results and comparisons show potential performance benefits for aircraft thermal management incorporating microchannel and phase change heat exchangers. / Master of Science

Page generated in 0.0617 seconds