Spelling suggestions: "subject:"bthermal 1roperties"" "subject:"bthermal croperties""
451 |
Silicon wafer surface temperature measurement using light-pipe radiation thermometers in rapid thermal processing systemsQu, Yan 28 August 2008 (has links)
Not available / text
|
452 |
A volumetric sculpting based approach for modeling multi-scale domainsKarlapalem, Lalit Chandra Sekhar 28 August 2008 (has links)
Not available / text
|
453 |
Gas transport properties of poly(n-alkyl acrylate) blends and modeling of modified atmosphere storage using selective and non-selective membranesKirkland, Bertha Shontae, 1976- 29 August 2008 (has links)
The gas transport properties of side-chain crystalline poly(n-alkyl acrylate) and poly(m-alkyl acrylate) blends are determined as a function of temperature for varying side-chain lengths, n and m, and blend compositions. The side chains of poly(n-alkyl acrylate)s crystallize independently of the main chain for n [is greater than or equal to] 10 which leads to an extraordinary increase in the permeability at the melting temperature of the crystallites. The compatibility of these polymers are examined and macroscopic homogeneity is observed for a small range of n and m when the difference /n - m/ is between 2 - 4 methylene units. Thermal analysis shows that the blend components crystallize independently of one another; at the same time, the crystallization of each component is hindered by the presence the other component. The permeation responses of these blends show two distinct permeation jumps as the crystallites from each component melt at their respective melting temperatures. Blends with continuous permeation responses are found to have higher effective activation energies than observed for common polymers. Thermal analysis proved to be a useful tool to help predict the permeation response for poly(alkyl acrylates); thus the thermal behavior of poly(n-alkyl acrylate) blended with n-aliphatic materials and random copolymers of poly(n-alkyl acrylates) are briefly examined. A bulk modified atmospheric storage design is proposed where produce is stored in a rigid chamber that is equipped with both selective and non-selective membrane modules that help regulate the oxygen entering and the carbon dioxide leaving the produce compartment. The design enables control of the atmosphere inside the chamber by modulating gas flow, i.e. the gas flow rate and composition, through the non-selective membrane by delivering fresh air upstream of the non-selective membrane. The model shows that the choice of materials for the selective and non-selective membranes dictate the range of concentrations achievable; however, the air flow rate allows the control between these ranges. The method to design a practical chamber from this model is also described.
|
454 |
Process development, material analysis, and electrical characterization of ultra thin hafnium silicate films for alternative gate dielectric applicationGopalan, Sundararaman 21 April 2011 (has links)
Not available / text
|
455 |
Experimental measurement and finite element modeling of bioheat transfer with phase changes of molten metal in contact with porcine skinCapt, William Michael 23 June 2011 (has links)
Not available / text
|
456 |
A measurement of solar reflectivity of building materials, Tucson, ArizonaAcklam, David Mark, 1946- January 1977 (has links)
No description available.
|
457 |
Thermal gradients and sulfide oxidation in the Silver Bell Mining District, Pima County, ArizonaEdmiston, Robert Corbett, 1942- January 1971 (has links)
No description available.
|
458 |
The physical properties of snowcover on sea ice in the Central High Arctic /Crocker, Gregory B. January 1984 (has links)
No description available.
|
459 |
THERMAL STUDY OF A TRIGLYCERIDE MIXTUREAl-Qatami 09 June 2011 (has links)
The heat capacity and the enthalpy of crystallization of the crystalline phases at the end of cooling must be known in order to determine the excess energy of mixing two pure triglycerides, trilaurin and trimyristin, cooled at different cooling rates. The present investigation was carried out using Differential Scanning Calorimetry, DSC, Modulated Differential Scanning Calorimetry, MDSC®, and Thermal Relaxation (in a Physical Properties Measurement System, PPMS). It was found that enthalpy of crystallization values can be measured to within ? 2% (SE) with DSC Q100 TA Instruments. To achieve this, an experimental procedure and a data analysis method are proposed.
It was not possible in this study to obtain accurate and reproducible heat capacity values using a DSC Q100 instrument. The values were shown to be significantly by the position of the sample pan in the measuring sensor. PPMS Cp values were within the literature values.
|
460 |
Thermodynamic investigations of some aqueous solutions through calorimetry and densimetryMarriott, Robert A., University of Lethbridge. Faculty of Arts and Science January 1999 (has links)
Relative densities and heat capacity ratios have been measured for selected aqueous systems. These measurements have been used to calculate apparent molar volumes and heat capacities. Densities of aqueous sodium bromide have been measured from 374 to 522 K and 10.00 to 30.00 MPa using a recently developed high temperature and pressure vibrating tube densimeter. These data have been used to test the utility of an automated high temperature and pressure densimetric data analysis program. Apparent molar volumes and heat capacities of several aqueous rare earth sulphate systems at 298.15 K and 0.10 MPa have been reported, and discussed in terms of ionic contributions. Single ion partial molar volumes and heat capacities for aqueous trivalent rare earth species have been estimated in a review of apparent molar data from the literature and through the use of semi-empirical Debye-Huckel equation. These singles ion properties have subsequently
been used to estimate the single ion properties of the monosulphate and disulphate rare earth complex species. Rigorous relaxation calculations are presented in a discussion of apparent molar heat capacities,
where relaxation contributions are shown to be negative. Apparent molar volumes and densities for aqueous L-histidine, L-phenylalanine, L-tyrosine, L-tryptophan, and L-dopa have been used to estimate reported
partial molar properties have been added to several reported properites for other amino acids and peptides to construct an additivity scheme that utilises the revised Helgeson, Kirkham, and Flowers (HKF) equations of state for neutral organic species. A volumetric study of aqueous glycine, L-serine, and glyclylglycine has been conducted at temperatures from 298 K to 423 K and pressures from 0.10 to 30.00 MPa. These data have been used to evaluate HKF coefficients in a discussion of peptide stability at elevated temperatures and pressures. / xvii, 220 leaves : ill. ; 28 cm.
|
Page generated in 0.0697 seconds