• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 80
  • 46
  • 45
  • 34
  • 10
  • 8
  • 8
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 639
  • 639
  • 153
  • 110
  • 101
  • 98
  • 97
  • 78
  • 75
  • 61
  • 50
  • 46
  • 46
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Experimenal and theoretical study of nano-materials (CNTs and TMDs)

Zhang, Xian January 2016 (has links)
Nano-materials are interesting material category with a single unit size between 1 and 1000 nanometers and possess unique mechanical, electrical, optical, and other physical properties that make them stand out from ordinary materials. With increasing demand for reduced size of electronic devices and integrated micro/nano-electro-mechanical systems (MEMS / NEMS), there is a high driving force in scientific research and technological advancement in nanotechnology. My research is about two popular novel nanomaterials: carbon nanotubes (1-dimensional material) and thin-layer transition metal dichalcogenides (2-dimensional materials). My first research direction is about the characterization of electrical properties of carbon nanotubes and using them as bio-sensors. Carbon nanotubes (CNTs), in general, are a material of great interest for many applications since their first discovery in 1991 [1], due to their unique structure, extraordinary electrical and mechanical properties, and unusual chemical properties. High-throughput fabrication of carbon nanotube field effect transistors (CNTFETs) with uniform properties has been a challenge since they were first fabricated in 1998. We invent a novel fabrication method to produce a 1×1 cm2 chip with over 700 CNTFETs fabricated around one single carbon nanotube. This large number of devices allows us to study the stability and uniformity of CNTFET properties. We grow flow-aligned CNTs on a SiO2/Si substrate by chemical vapor deposition and locate a single long CNT (as long as 1 cm) by scanning electron microscopy. Two photolithography steps are then used, first to pattern contacts and bonding pads, and next to define a mask to ‘burn’ away additional nanotubes by oxygen plasma etch. A fabrication yield of ~72% is achieved. The authors present statistics of the transport properties of these devices, which indicates that all the CNTFETs share the same threshold voltage, and similar on-state conductance. These devices are then used to measure DNA conductance by connecting DNA molecule of varying lengths to lithographically cut CNTFETs. While one single carbon nanotube is considered 1-dimensional material because it only has one side with “non-nano” length, the thin-layer transition metal dichalcogenides (TMDCs) are called the 2-dimensional materials since they have two sides of normal lengths and the other side of atomic size. Atomically thin materials such as graphene and semiconducting transition metal dichalcogenides have attracted extensive interests in recent years, motivating investigation into multiple properties. We use a refined version of the optothermal Raman technique [2][3] to measure the thermal transport properties of two TMDC materials, MoS2 and MoSe2, in single-layer (1L) and bi-layer (2L) forms. This new version incorporates two crucial improvements over previous implementations. First, we utilize more direct measurements of the optical absorption of the suspended samples under study and find values ~40% lower than previously assumed. Second, by comparing the response of fully supported and suspended samples using different laser spot sizes, we are able to independently measure the interfacial thermal conductance to the substrate and the lateral thermal conductivity of the supported and suspended materials. The approach is validated by examining the response of a suspended film illuminated in different positions in radial direction. For 1L MoS2 and MoSe2, the room-temperature thermal conductivities are (80±17) W/mK and (55±18) W/mK, respectively. For 2L MoS2 and MoSe2, we obtain values of (73±25) W/mK and (39±13) W/mK. Crucially, the interfacial thermal conductance is found to be of order 0.1-1 MW/m2K, substantially smaller than previously assumed, a finding that has important implications for design and modeling of electronic devices.
162

Cálculo da condutividade térmica do Argônio sólido puro e com defeito pontual

Trindade, Ranyere Deyler 14 March 2008 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-07-31T12:16:56Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Calculo_da_condutividade_termica_do_argonio_solido_puro_e_com_defeito_pontual.pdf: 283748 bytes, checksum: d7815053104cf5341740be05c829feff (MD5) / Made available in DSpace on 2014-07-31T12:16:57Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Calculo_da_condutividade_termica_do_argonio_solido_puro_e_com_defeito_pontual.pdf: 283748 bytes, checksum: d7815053104cf5341740be05c829feff (MD5) Previous issue date: 2008-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, using the Green-Kubo method combined with Molecular Dynamic (DM), we calculate the thermal conductivity of a solid Argon "free of defects"and with point defect present, for temperatures varying from 10 up to 60 K at density 22,3 ml/mol. The obtained results are in good agreement with the available theoretical and experimental results in the limites of low and high temperatures, but with some discrepances in about 15 % for intermediate values of temperatures. The purpose to include point defects with the objective of correction of the simulational results to compare with experimental measuremments for intermediate temperatues had not the expected e?ect. However, we believe that it should be due to the fact that the density used in the simulation for the point defect is high based on the experimental estimates of point defect density in this system. Our results suggest that the Green-Kubo method combined with Molecular Dynamics is a powerful tool to calculate the thermal conductivity of solids at high temperatures. With the construction of accurate and reliable interatomic potentials to describe more complex materials, such as high temperature ceramic and minerals at extreme condiction of pressure and temperature, this method could soon become very useful to calculate thermal conductivity in materials where the access to experimental data is hard. / Neste trabalho, usando o método de Green-Kubo combinado com a Dinâmica Molecular (DM), calculamos a condutividade têrmica do Argônio sólido livre de defeitos ;e com defeitos pontuais presentes, para um intervalo de temperatura variando de 10 a 60 K e uma densidade de 22,3 ml/mol. Os resultados obtidos estão em pleno acordo com os resultados teóricos e experimentais disponíveis nos limites de baixa e alta temperatura, mas com alguma discrepância em torno de 15 % para valores intermediários de temperatura. A proposta para incluir defeitos pontuais com o objetivo de correção dos resultados da simulação para comparar com as medidas experimentais para temperaturas intermediárias não surtiu o efeito esperado, no entanto, acreditamos que isto se deve ao fato da densidade de defeitos ser alta baseado em estimativas da densidade de defeitos neste sistema. Nossos resultados sugerem que o método de Green-Kubo combinado com DM é uma ferramenta poderosa para se calcular a condutividade térmica de sólidos a altas temperaturas. Com a construção de potenciais interatômicos mais precisos e con fiáveis para descrever materiais mais complexos, como é o caso de cerâmicas a altas temperaturas e minerais em condições extrema de pressão e temperatura, esse método poderá em breve ser muito útil para calcular a condutividade térmica em materiais onde o acesso a dados experimentais é mais difícil.
163

Characterization and Optimization of Thermal Protective Fabrics Designed to Protect Against Splash Hazards

Osguthorpe, Jeremy 11 June 2014 (has links)
Thermal textiles used in Personal Protective Equipment (PPE) are used to protect individuals from the hazards of thermal energy. An analytical model of the diffusion of thermal energy within the fabric was developed to simulate the transfer of thermal energy due to a hot liquid splash. Based on the model results, it was determined that that the use of an orthotropic material in which the thermal conductivities in the radial and axial directions are different can be used to decrease the amount of heat transferred through the fabric and thereby increase amount of protection in PPE. An orthotropic material particularly performs well under situations where splashes are small in size and short in time duration. The increased level of protection may be enough to prevent a second-degree burn as determined by the Stoll criterion for materials in which the radial thermal conductivity is much larger than the axial thermal conductivity. , However, situations with larger splashes over longer duration, the benefits are minimal and at best may reduce the amount of energy transferred over part of the splash site thereby minimizing potential size of burn areas. A semi empirical test method in which analytical results are matched to experimental results by iteratively changing the radial thermal conductivity was presented as a way to extract information about the extent that a fabric is orthotropic. Preliminary results as compared to numerical CFD experimentation show that with a calibrated model, the method has potential of giving good results. Further physical experimentation is recommended to further validate that this method could be of use in determining the extent that a fabric is orthotropic.
164

Methods of Thermoelectric Enhancement in Silicon-Germanium Alloy Type I Clathrates and in Nanostructured Lead Chalcogenides

Martin, Joshua 05 March 2008 (has links)
The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 < x < 14) is reported. Substitution of Si within the Ga-Ge lattice framework of the type I clathrate Ba8Ga16Ge30 results in thermoelectric performance enhancement. The unique dependences of carrier concentration, electrical resistivity, Seebeck coefficient, and carrier effective mass on Si substitution level, may imply a modified band structure with Si substitution. These materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for the first time, dense dimensional nanocomposites prepared by densifying nanocrystals synthesized employing a solution-phase reaction. Furthermore, the carrier concentration of the PbTe nanocomposites can be adjusted by directly doping the nanocrystals, necessary for power factor optimization. These materials were fully characterized using a low temperature TE transport measurement system, and exhibit enhanced power factors when compared to bulk polycrystalline PbTe with similar carrier concentrations.
165

Numerical and Experimental Study of Anisotropic Effective Thermal Conductivity of Particle Beds under Uniaxial Compression

Mo, Jingwen 01 August 2012 (has links)
Measurements of in situ planetary thermal conductivity are typically made using long needle-like probes inserted in a planet's surface, which measure effective thermal conductivity (ETC) in radial direction (parallel to surface). The desired vertical (perpendicular to surface) ETC is assumed to be the same as the horizontal. However, ETC of particle beds in vertical and horizontal directions is known to be an anisotropic property under low compressive pressures. This study further examines the anisotropy of bed ETC under low and high compressive pressures in both vacuum and air environments. The ratio of vertical to horizontal stress, K0, is measured for the particles used in these experiments. A resistance network heat transfer model has been developed in predicting the vertical and the horizontal ETC as a function of applied compressive pressure. The model predicts vertical ETC by using only macro-contact thermal resistances for both high and low applied compressive pressure regimes. It is proposed that the vertical and horizontal ETC of particle beds under uniaxial compression is related by compressive pressures in each direction. The horizontal compressive pressure, which is perpendicular to the applied compressive pressure, can be calculated with the use of at-rest pressure coefficient and subsequently used in macro-contact thermal resistance to predict the horizontal ETC. The vertical ETC is obtained using the same model by substituting vertical compressive pressure into macro-contact thermal resistance. A two-dimensional axisymmetric finite element model in the COMSOL Multiphysics software package has been developed to simulate heat transfer coupled with structural deformation of spheres under compressive pressures in a simple cubic (SC) packing arrangement. The numerical model is used as a tool to predict the lower limit of bed ETC as well as validating thermal contact resistance used in the theoretical model. The predictions from the numerical model can be extended to particle beds with different packing arrangements.
166

Towards Fundamental Understanding of Thermoelectric Properties in Novel Materials Using First Principles Simulations

Khabibullin, Artem R. 29 June 2018 (has links)
Thermoelectric materials play an important role in energy conversion as they represent environmentally safe and solid state devices with a great potential towards enhancing their efficiency. The ability to generate electric power in a reliable way without using non-renewable resources motivates many experimentalists as well as computational physicists to search and design new thermoelectric materials. Several classes of materials have been identified as good candidates for high efficient thermoelectrics because of their inherently low thermal conductivity. The complex study of the crystal and electronic structures of such materials helps to reveal hidden properties and give fundamental understanding, necessary for the development of a new generation of thermoelectrics. In the current thesis, ab-initio computational methods along with experimental observations are applied to investigate several material classes suitable for thermoelectric applications. One example are Bi-Sb bismuth rich alloys, for which it is shown how structural anomalies affect the electronic structure and how inclusion of the Spin-Orbit coupling is necessary for this type of materials. Another example are bournonite materials whose low thermal conductivity is attributed to distortions and interactions associated with lone-electron s^2 pair distributions. In addition, it is shown how doping with similar atoms can affects electronic structure of these materials leading to changes in their transport properties. Clathrate materials from the less studied type II Sn class are also investigated with a detailed analysis for their structural stability, electronic properties and phonons. These systems are considered with partially substituted atoms on the framework and different guests inside. The effect upon insertion of Noble gases into the cage network is also investigated. In addition, the newly synthesized As based cationic material is also studied finding novel structure-property relations. Another class of materials, quaternary chalcogenides, have also been studied. Because of their inherently low thermal conductivity and semiconducting nature their transport properties may be optimized in a favorable way for thermoelectricity. The present work provides an in-depth study of structural and electronic properties of several classes of materials, which can be used by experimentalists for input and guidance in the laboratory.
167

Thermal conduction in the Fermi-Pasta-Ulam model

Tempatarachoke, Pisut, Physical, Environmental & Mathematical Sciences, Australian Defence Force Academy, UNSW January 2005 (has links)
We conduct a comprehensive and systematic study of the Fermi-Pasta-Ulam (FPU) model using both equilibrium and non-equilibrium molecular dynamics simulations, with the aim being to explain the cause of the anomalous energy-transport behaviour in the model. In the equilibrium scenario, our motivation stems from the lack of a complete understanding of the effects of initial conditions on the energy dissipation among Fourier modes. We also critically reconsider the ????probes' that had been widely used to quantitatively describe the types of energy sharing in a system, and then decide on a preferred choice to be used in our equilibrium study. We establish, from strong numerical evidence, that there exists a critical energy density of approximately 0:1, above which the energy dissipation among the modes becomes independent of initial conditions and system parameters, and that the full equipartition of mode energy is never attained in the FPU model. We report, for the first time, the violation of particle positions in the FPU model at high energies, where the particles are found to pass through one another. In the non-equilibrium scenario, we critically review the Nos???Se-Hoover algorithm thermostatting method largely used by other works, and identify its weaknesses. We also review some other alternative methods and decide on the most appropriate one to be implemented throughout our work. We confirm the divergence of the thermal conductivity of the FPU model as the chain length increases, and that kfpu [symbol] No.41, in agreement with other works. Our study further shows that there exists an upper limit of the anharmonicity in the FPU model, and that any attempt to increase the strength of this anharmonicity will not succeed. We also introduce elastic collisions into the original FPU model and find that the Modified model (FPUC) still exhibits anomalous thermal conductivity. We conclude that a one-dimensional FPU-type model with ????only' nearest-neighbour interaction, regardless of being soft or hard, does not exhibit a finite thermal conductivity as the system size increases, due to the non-chaotic nature of its microscopic dynamics, the origin of which we are unable to account for. Finally, we briefly outline possible research directions.
168

Modelling of heat and mass transport in composite materials

Muthubandara, Nilindu January 2008 (has links)
Masters Research - Master of Philosophy (Engineering) / Thermal conduction properties are of major concern for those metal/ceramic composite materials having applications in semiconductor devices and electronic packaging materials. A higher thermal conductivity to coefficient of thermal expansion ratio is an advantage for such materials employed in electronic devices due to the subjective high thermal loads. It is well known that the shape, size and distribution of the insulating phase have an effect on the overall thermal conductivity properties. But the details are lacking and well deserving of study. Metal/ceramic oxide interfaces are important in the strengthening mechanisms of dispersion strengthened materials. Accordingly, considerable attention has been given to recent investigations of oxygen diffusion characteristics and the bonding mechanisms at such interfaces. Susceptibility to oxidation can be studied by analysing several thicknesses of material. As an example, studying a thin film and a semi-infinite material subjected to a high oxygen partial pressure environment and a vacuum condition would help to determine the oxidation (in-diffusion) and de-oxidation (out-diffusion) processes respectively. Since metal/ceramic internal interfaces play a very important role in controlling the mechanical, thermal and electrical properties, it is timely to consider these diffusion processes for detailed study. In this Thesis, the two areas mentioned above were selected for detailed investigation. The Thesis also addresses the further development of a method for solving complex phenomenological diffusion problems. This method makes use of lattice-based random walks of virtual particles, directed according to the Monte Carlo method (the Lattice Monte Carlo method) which is then used to address various mass and thermal diffusion processes. Chapter 2 is concerned with using this method to determine the thermal conductivity of model composites. In that chapter, the Lattice Monte Carlo method is used to calculate the effective thermal conductivity of several models of a composite, where inclusions are arranged in square planar and cubic arrangements with periodic boundary conditions. Excellent agreement is found of the effective thermal conductivity with the century-old Maxwell-Garnett Equation. Chapter 3 is concerned with a phenomenological representation of oxygen diffusion and segregation in a model composite based on Ag/MgO. The Lattice Monte Carlo method is employed to address mass diffusion in this composite. Square and randomly distributed multiple inclusions were considered as shapes of the MgO inclusion phase. The time-dependence of oxygen concentration depth profiles and contour maps were determined. First, oxygen in-diffusion is considered from a constant surface source solely into the Ag metal matrix: oxygen depth profiles were in excellent agreement with exact results. Next, oxygen in-diffusion/segregation is simulated in the composite by permitting and restricting the mobility of oxygen in different scenarios involving the Ag-MgO interface. The (higher temperature) out-diffusion of oxygen from the composite was also simulated and corresponding results obtained for the oxygen depth profiles. In both cases, very good agreement was found between the results from the Lattice Monte Carlo method and analytical expressions.
169

A Study on the Thermal State of Steelmaking Ladles

Glaser, Björn January 2012 (has links)
In the present thesis a study on the thermal state of steelmaking ladles was undertaken. The transient hot wire method was verified for thermal conductivity measurements on metallurgical slags and applied to ladle slag measurements. Temperature measurements on ladles in an industrial environment were carried out. The emissivities of the outer and inner shells of steelmaking ladles were investigated. Two dynamic models were developed to predict the heat transfer and fluid flow in a preheating and teeming ladle. The gathered thermal conductivity values for ladle slag were used to study the effect of the slag layer on the top surface of the melt on heat transfer and fluid flow in a teeming ladle. In the first stage, the transient hot-wire method was verified to measure the thermal conductivity of metallurgical slags at steelmaking temperatures. A numerical model was developed, cold model experiments were conducted and test measurements using a high temperature experimental setup were carried out. To minimize natural convection and to obtain more reliable measurements, the crucible diameter, the hot-wire diameter, the applied current, the position of the wire in the crucible and the cooling on the upper surface of the crucible were studied. Investigations into the choice of sheathing material of the circuit exposed to the slag were also made. It was found that only certain materials were suitable for slag measurements depending on slag composition and temperature. The electrical resistivity of the hot wire was measured to make the thermal conductivity calculation more reliable. The wire diameter also played a major role due to the heat generation per surface area. The thermal conductivity should be derived from the values measured during the first seconds. In this initial stage, the effect of the natural convection as a function of the wire position in the crucible, the cooling on the top surface and the diameter of the crucible are negligible. A compromise has to be made in choosing the electrical current, since higher current results in higher sensitivity but at the same time in more natural convection. In the second stage, the thermal conductivities of four different ladle slags were measured at 1773 K, 1823 K, 1873 K and 1923 K using the transient hot wire method. Very good reproducibility was obtained. The thermal conductivity did not vary substantially with the variation of slag composition at 1873 K and 1923 K, at which the slag samples were all entirely liquid. The thermal conductivities were low. It was found that the precipitation of solid phase resulted in a considerable increase of thermal conductivity. In the third stage, a two dimensional model was developed in order to predict the temperature distribution in the ladle wall during the preheating process. The model calculated the heat transfer and the velocity field in the gas phase inside the ladle as well as the heat transfer in the solid walls during the preheating process. Measurements of the temperature profiles in an industrial ladle were carried out using an infrared thermography. The measurements were made both inside and outside the ladle. The model predictions were found to be in reasonably good agreement with the measured temperatures. It was found that the preheating time could be minimized when the working lining became thinner. The effect ofthe distance between the lid and the ladle was also studied by the model. The results indicated that there was no significant temperature change on the upper side wall of the ladle. On the lower side wall and bottom the temperature changed slightly. The temperature difference in the lower part of the ladle could be explained by the larger flame distance from the bottom layer. In the fourth stage, a two dimensional axisymmetric model was developed to predict the heat flux in a steelmaking ladle during the teeming process. The model predicts dynamically the flow fields in both the liquid phase and the gas phase along with the movement of the liquid upper surface. The model also predicts the temperature distributions in the liquid metal, gas phase and all layers in the ladle wall. Again, industrial measurements were performed using an infrared thermography, both inside the ladle after teeming and at the wall outside the ladle during the whole process sequence. The model predictions were found to be in agreement with the measured data. It was found that the heat transfer to the surrounding atmosphere and the conductivity of the highly insulating layer were the most important factors for the heat loss. The decrease of the thickness of the working lining was found to have limited effect on the total heat flux. In the fifth and final stage, the effect of the slag layer on the top surface of the melt, on fluid flow and on heat transfer in a teeming ladle was investigated theoretically. The two dimensional axisymmetric model developed in the fourth stage was used. To predict the effect of the slag layer a stationary heat conduction boundary condition including thermal conductivity and slag layer thickness was employed. Different calculations with differing thermal conductivity values for the slag layer were carried out. The calculations showed that the effect of the slag layer was insignificant. This could be explained by the similarity of the thermal conductivity of slag and gas phase. / <p>QC 20121010</p>
170

Long-term matric suction measurements in highway subgrades

Nguyen, Quan 17 May 2006
The performance of Thin Membrane Surface (TMS) highways is largely controlled by the strength of the subgrade soil which in turn is a function of the soil suction (Fredlund and Morgenstern, 1977). Thermal conductivity suction sensors can be used to indirectly measure in situ matric suction. <p>Thirty two (32) thermal conductivity sensors were installed under Thin Membrane Surface (TMS) in two highway locations; namely, Bethune and Torquay, Saskatchewan, in September 2000. The sensors were installed beneath the pavement, shoulder and side-slope to monitor matric suction and temperature changes with time. The monitoring system at Bethune was damaged after two years of operation. The thermal conductivity sensors at Torquay all appear to have been working well and data are still being collected.<p>Other attempts had been made in the past to use thermal conductivity sensors for field suction measurement, but all were terminated within a short period of time due to limitations associated with the equipment. The long-term suction measurement at the Torquay site is unique and provides valuable field data. <p>This research project presents and interprets the long-term matric suction measurements made between the years 2000 to 2005 at the Torquay site and from 2000 to 2002 at the Bethune site. To help in the interpretation of the data, a site investigation was undertaken along with a laboratory testing program that included the measurement of Soil-Water Characteristic Curves (SWCC). As well, a limited laboratory study was undertaken on several new thermal conductivity matric suction sensors. <p>The matric suction readings in the field showed a direct relationship to rainfall and regional evaporation conditions at the test sites. At the Bethune and Torquay test sites, the changes in matric suctions appeared to be mainly due to the movement of moisture through the edge of the road. Relatively constant equilibrium suctions were encountered under the driving-lanes. Conversely, matric suctions under the side-slopes were found to vary considerably with time and depth. Matric suctions under the driving-lanes ranged from 20 to 60 kPa throughout the years. Matric suctions on the side-slopes changed from 100 to 1500 kPa over the years. <p>The greatest variation of soil suctions occurred in the month of April from location to location in the subgrade. The soil suctions became less variable in June while larger variations again occurred from July to October. <p>The matric suction measurements obtained from the thermal conductivity sensors showed a general agreement with the values estimated using the soil-water characteristic curves, SWCC, measured in the laboratory.

Page generated in 0.0624 seconds