• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 6
  • 5
  • 3
  • 1
  • Tagged with
  • 48
  • 48
  • 21
  • 14
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modélisation du couplage conduction/rayonnement dans les systèmes de protection thermique soumis à de très hauts niveaux de températures / Coupled radiative/conductive heat transfer modeling in thermal protection systems at high temperature

Le Foll, Sébastien 11 September 2014 (has links)
Les travaux présentés dans cette thèse CIFRE financée par AIRBUS Defence & Space s’intègrent dans une problématique de développement de nouveaux Systèmes de Protection Thermique (TPS) pour l’entrée atmosphérique. Ils se focalisent sur l’étude du transfert radiatif dans la zone d’ablation du TPS et son couplage avec le transfert conductif au travers de la matrice fibreuse de faible densité. Pour réaliser cette étude, il a été nécessaire d’évaluer les propriétés thermiques de ces matériaux, notamment les propriétés radiatives qui, contrairement aux conductivités thermiques, demeurent mal connues. La première étape de cette étude a donc visé à caractériser les propriétés optiques et radiatives de certains matériaux fournis par AIRBUS Defence & Space et par le CREE Saint-Gobain. Pour réaliser ces caractérisations, nous avons développé une méthode originale d’identification des propriétés radiatives basée sur des mesures de l’émission propre. Les spectres d’émission à haute température, réalisés sur des échantillons en fibre de silice ou en feutre de carbone nécessaires à l’identification, sont obtenus sur un banc de spectrométrie FTIR développé lors de ces travaux. Les échantillons sont chauffés à haute température à l’aide d’un laser CO2 et un montage optique permet de choisir entre la mesure du flux émis par l’échantillon ou un corps noir servant à l’étalonnage du banc. L’identification des propriétés repose sur la modélisation des facteurs de distribution du rayonnement calculés à l’aide d’une méthode de lancé de rayons Monte Carlo utilisant la théorie de Mie pour un cylindre infini pour le calcul des propriétés radiatives. Les températures identifiées sont comparées aux températures mesurées par pyrométrie au point de Christiansen dans le cas de la silice et montrent un bon accord avec ces dernières. Enfin la dernière partie de ce document est consacrée au couplage conduction-rayonnement dans ce type de milieu. Les échantillons ayant une très forte extinction, le modèle utilisé repose sur la définition d’une conductivité équivalente de Rosseland pour traiter les transferts radiatifs volumiques et ainsi simuler les champs de température au sein des échantillons dans les conditions de chauffage utilisées lors de l’identification. Dans le cas de la silice, cependant, les températures prédites par le modèle utilisant la conductivité équivalente de Rosseland, sont nettement supérieures à celles obtenues par identification ou par pyrométrie au point de Christiansen. Le fait que la conductivité équivalente de Rosseland ne fasse pas la distinction entre une forte extinction due à la diffusion ou à l’absorption est probablement la cause de cette différence. / The work presented in this thesis has been financed by AIRBUS Defence and Space. It is part of the development strategy of new Thermal Protection Systems (TPS) for atmospheric reentry purposes. The aim is to study the radiative transfer in the ablation zone of the TPS as well as the coupling of the radiative and conductive heat transfer in the low density fibrous matrix. To this end, radiative properties of the materials have to be evaluated since they are not well known. The first step of this study is therefore to characterize the optical and radiative properties of sample provided by AIRBUS Defence and Space and the CREE Stain-Gobain laboratory. Thus, an original identification method based on radiative emission measurement was developed to obtain the radiative properties. The needed emission spectra are measured on silica or carbon samples at high temperature with an experimental setup based on Fourrier Transformed InfraRed spectrometry. The samples are heated using a CO2 laser. An optical setup allows us to measure emission spectra on the sample or a black body used to calibrate the experiment. The identification process is based on the modeling of the radiative distribution factor computed by a Monte Carlo ray-tracing method. It uses Mie theory for infinite cylinder to compute the radiative properties. Temperature are also identified and, for silica, compared to the one measured by a Christiansen pyrometry technique. The last part of this study focuses on the coupled radiative/conductive heat transfer modeling in low density fibrous media. Samples being greatly absorbing, we used the Rosseland equivalent conductivity to model the radiative transfer in volume and obtain the thermal response of the samples in the conditions of the experimental setup used for the identification. For silica, predicted temperatures are superior to the identified ones or those measured with the Christiansen pyrometry technique. This is probably because the Rosseland equivalent conductivity makes no difference between extinction due to absorption and extinction due to scattering.
42

Možnosti využití kameniva na bázi odpadní skleněné moučky v novodobých stavebních materiálech / Possibilities of utilization of aggregate based on glass powder in new building materials

Novák, Jakub January 2018 (has links)
The diploma thesis deals with the use of waste glass powder as an aggregate in thermal insulation plasters for AAC. In the theoretical part, the problem of thermal protection of buildings is discussed first. The production and properties of foamed glass are described. Then the research of plasters, their composition and properties was made. Thermal-insulating plasters are specified and their use has been proposed for thermal insulation of building structures. In the practical part, suitable formulations have been proposed in the form of dry plaster and mortar mixtures (SOMS). Test samples were prepared from them. The physical and mechanical properties were measured. These were compared with the requirements set by standards and technical regulations. To get closer to the behavior of plasters on real buildings an AAC wall was built. The individual recipes were applied on it. It was monitored working with plaster and how it held on the masonry. During ripening crack development was observed. Optimization calculation inculded these aspects and it determined the optimal recipe. All designed recipes can be used as a thermal-insulating plasters.
43

Domov pro seniory v Telnici / Pension for the Elderly in Telnice

Konečná, Petra January 2013 (has links)
Topic of this master’s thesis is a retirement house in village Telnice. The project was designed directly for village Telnice according to their requirements. It is a three-floor construction complied with country style. The building has a saddle roof. A flat roof is used over terraces which join each floor with the outside. Construction material is brick masonry with a thermal insulation system. Parts of the diploma’s thesis are also calculations of the thermal-technical parameters and fire safety of the building, concrete structures and technical equipments of building.
44

Navržení a posouzení ekonomické efektivnosti kontaktního zateplovacího systému rodinného domu s využitím státní dotace v rámci ČR a SR / The design and evaluation of economic efficiency thermal insulation composite system of the house with a government grant in the CR and SR

Sobola, Martin January 2017 (has links)
The aim of the master thesis is the assessment of the economic effectivity of thermal insulation with the state incentives in the Czech Republic and Slovak Republic. In the master thesis, the issue of investment, the possibilities of state funding of the construction industry, a detailed analysis of national funding programs aimed at promoting thermal insulation and the characteristics of thermal insulation contact system will be discussed with the focus on the design, realization management of the building and material possibilities. The output of the master thesis will be a proposal of a possible solution of thermal insulation contact system on a reference object. The financing of the investment will be compared in case of investment based on own resources or a bank loan, with the final assessment of economic efficiency with the use of insulation subsidy programs in the Czech Republic and Slovak Republic.
45

Исследование конструктивных особенностей фасадных систем жилых зданий на энергоэффективность : магистерская диссертация / Research of design features of facade systems of residential buildings for energy efficiency

Божьяков, Р. Ю., Bozhyakov, R. Yu. January 2023 (has links)
Определены основные конструктивные особенности фасадных систем, разработана методика оценки энергоэффективности фасадных систем на основе указанных конструктивных особенностей, проведен сравнительный анализ результатов, определены наиболее эффективные фасадные системы с точки зрения энергосбережения. / The main design features of facade systems are determined, a methodology for assessing the energy efficiency of facade systems based on the indicated design features is developed, a comparative analysis of the results is carried out, and the most effective facade systems are determined from the point of view of energy saving.
46

Sensorless Stator Winding Temperature Estimation for Induction Machines

Gao, Zhi 17 October 2006 (has links)
The organic materials used for stator winding insulation are subject to deterioration from thermal, electrical, and mechanical stresses. Stator winding insulation breakdown due to excessive thermal stress is one of the major causes of electric machine failures; therefore, prevention of such a failure is crucial for increasing machine reliability and minimizing financial loss due to motor failure. This work focuses on the development of an efficient and reliable stator winding temperature estimation scheme for small to medium size mains-fed induction machines. The motivation for the stator winding temperature estimation is to develop a sensorless temperature monitoring scheme and provide an accurate temperature estimate that is capable of responding to the changes in the motors cooling capability. A discussion on the two major types of temperature estimation techniques, thermal model-based and parameter-based temperature techniques, reveals that neither method can protect motors without sacrificing the estimation accuracy or motor performance. Based on the evaluation of the advantages and disadvantages of these two types of temperature estimation techniques, a new online stator winding temperature estimation scheme for small to medium size mains-fed induction machines is proposed in this work. The new stator winding temperature estimation scheme is based on a hybrid thermal model. By correlating the rotor temperature with the stator temperature, the hybrid thermal model unifies the thermal model-based and the parameter-based temperature estimation techniques. Experimental results validate the proposed scheme for stator winding temperature monitoring. The entire algorithm is fast, efficient and reliable, making it suitable for implementation in real time stator winding temperature monitoring.
47

Experimental Investigations Of Surface Interactions Of Shock Heated Gases On High Temperature Materials Using High Enthalpy Shock Tubes

Jayaram, V 06 1900 (has links)
The re-entry space vehicles encounter high temperatures when they enter the earth atmosphere and the high temperature air in the shock layer around the body undergoes partial dissociation. Also, the gas molecules injected into the shock layer from the ablative thermal protection system (TPS) undergo pyrolysis which helps in reducing the net heat flux to the vehicle surface. The chemical species due to the pyrolysis add complexity to the stagnation flow chemistry (52 chemical reactions) models which include species like NOx, CO and hydrocarbons (HCs). Although the ablative TPS is responsible for the safety of re-entry space vehicle, the induced chemical species result in variety of adverse effects on environment such as global warming, acid rain, green house effect etc. The well known three-way-catalyst (TWC) involves simultaneous removal of all the three gases (i.e, NOx, CO, Hydrocarbons) present in the shock layer. Interaction of such three-way-catalyst on the heat shield materials or on the wall of the re-entry space vehicle is to reduce the heat flux and to remove the gases in the shock layer, which is an important issue. For the re-entry vehicle the maximum aerodynamic heating occurs at an altitude ranging about 68 to 45 km during which the vehicle is surrounded by high temperature dissociated air. Then the simplest real gas model of air is the five species model which is based on N2, O2, O, NO and N. This five species model assumes no ionization and no pyrolysis gases are emitted from the heat shield materials. The experimental research work presented in this thesis is directed towards the understanding of catalytic and non-catalytic surface reactions on high temperature materials in presence of strong shock heated test gas. We have also explored the possibility of using shock tube as a high enthalpy device for synthesis of new materials. In the first Chapter, we have presented an overview of re-entry space vehicles, thermal protection system (TPS) and importance of real gas effects in the shock layer. Literature survey on TPS, ablative materials and aerothermochemistry at the stagnation point of reentry capsule, in addition to catalytic and non-catalytic surface reactions between the wall and dissociated air in the shock layer are presented. In Chapters 2 and 3, we present the experimental techniques used to study surface reactions on high temperature materials. A brief description of HST2 shock tunnel is presented and this shock tunnel is capable of generating flow stagnation enthalpies ranging from 0.7 to 5 MJ/kg and has an effective test time of ~ 800 µs. High speed data acquisition system (National Instruments and Yokogawa) used to acquire data from shock tube experiments. The experimental methods like X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Raman and FTIR spectroscopy have been used to characterize the shock-exposed materials. Preliminary research work on surface nitridation of pure metals with shock heated nitrogen gas is discussed in Chapter 2. Surface nitridation of pure Al thin film with shock heated N2 is presented in Chapter 3. An XPS study shows that Al 2p peak at 74.2 eV is due to the formation AlN on the surface of Al thin film due to heterogeneous non-catalytic surface reaction. SEM results show changes in surface morphology of AlN film due to shock wave interaction. Thickness of AlN film on the surface increased with the increase in temperature of the shock heated nitrogen gas. However, HST2 did not produce sufficient temperature and pressure to carry out real conditions of re-entry. Therefore design and development of a new high enthalpy shock tunnel was taken up. In Chapter 4, we present the details of design and fabrication of free piston driven shock tunnel (FPST) to generate high enthalpy test gas along with the development of platinum (Pt) and thermocouple sensors for heat transfer measurement. A free piston driven shock tunnel consists of a high pressure gas reservoir, compression tube, shock tube, nozzle, test section and dump tank connected to a vacuum pumping system. Compression tube has a provision to fill helium gas and four ports, used to mount optical sensors to monitor the piston speed and pressure transducer to record pressure at the end of the compression tube when the piston is launched. Piston can attain a maximum speed of 150 m/s and compress the gas inside the compression tube. The compressed gas bursts the metal diaphragm and generates strong shock wave in the shock tube. This tunnel produces total pressure of about 300 bar and temperature of about 6000 K and is capable of producing a stagnation enthalpy up to 45 MJ/kg. The calibration of nozzle was carried out by measuring the pitot tube pressure in the dump tank. Experimentally recorded P5 pressure at end of the shock tube is compared with Numerical codes. Calibrated pressure P5 values are used to calculate the temperature T5 of the reflected shock waves. This high pressure and high temperature shock heated test gas interacts with the surface of the high temperature test materials. For the measurement of heat transfer rate, platinum thin film sensors are developed using DC magnetron sputtering unit. Hard protective layer of aluminum nitride (AlN) on Pt thin film was deposited by reactive DC magnetron sputtering to measure heat transfer rate in high enthalpy tunnel. After the calibration studies, FPST is used to study the heat transfer rate and to investigate catalytic/non-catalytic surface reaction on high temperature materials. In Chapter 5, an experimental investigation of non-catalytic surface reactions on pure carbon material is presented. The pure carbon C60 films and conducting carbon films are deposited on Macor substrate in the laboratory to perform shock tube experiments. These carbon films were exposed to strong shock heated N2 gas in the shock tube portion of the FPST tunnel. The typical shock Mach number obtained is about 7 with the corresponding pressure and temperature jumps of about 110 bar and 5400 K after reflection at end of the shock tube. Shock exposed carbon films were examined by different experimental techniques. XPS spectra of C(1s) peak at 285.8 eV is attributed to sp2 (C=N) and 287.3 eV peak is attributed to sp3 (C-N) bond in CNx due to carbon nitride. Similarly, N(1s) core level peak at 398.6 eV and 400.1 eV observed are attributed to sp3-C-N and sp2-C=N of carbon nitride, respectively. SEM study shows the formation of carbon nitride crystals. Carbon C60 had melted and undergone non-catalytic surface reaction with N2 while forming carbon nitride. Similar observations were made with conducting carbon films but the crystals were spherical in shape. Micro Raman and FTIR study gave further evidence on the formation of carbon nitride film. This experimental investigation confirms the formation of carbon nitride in presence of shock-heated nitrogen gas by non-catalytic surface reaction. In Chapters 6 and 7, we present a novel method to understand fully catalytic surface reactions after exposure to shock heated N2, O2 and Ar test gas with high temperature materials. We have employed nano ZrO2 and nano Ce0.5Zr0.5O2 ceramic high temperature materials to investigate surface catalytic reactions in presence of shock heated test gases. These nano crystalline oxides are synthesized by a single step solution combustion method. Catalytic reaction was confirmed for both powder and film samples of ZrO2. As per the theoretical model, it is known that the catalytic recombination reaction produces maximum heating on the surface of re-entry space vehicles. This was demonstrated in this experiment when a metastable cubic ZrO2 changed to stable monoclinic ZrO2 phase after exposure to shock waves. The change of crystal structure was seen using XRD studies and needle type monoclinic crystal growth with aspect ratio (L/D) more than 15 was confirmed by SEM studies. XPS of Zr(3d) core level spectra show no change in binding energy before and after exposure to shock waves, confirming that ZrO2 does not change its chemical nature, which is the signature of catalytic surface reaction. When a shock heated argon gas interacted with Ce0.5Zr0.5O2 compound, there was a change in colour from pale yellow to black due to reduction of the compound, which is the effect of heat transfer from the shock wave to the compound in presence of argon gas. The reduction reaction shows the release of oxygen from the compound due to high temperature interaction. The XPS of Ce(3d) and Zr(3d) spectra confirm the reduction of both Ce and Zr to lower valent states. The oxygen storage and release capacity of the Ce0.5Zr0.5O2 compound was confirmed by analyzing the reduction of Ce4+ and Zr4+ with high temperature gas interaction. When Ce0.5Zr0.5O2 (which is same as Ce2Zr2O8) in cubic fluorite structure was subjected to strong shock, it changed to pyrochlore (Ce2Zr2O7) structure by releasing oxygen and on further heating it changed to Ce2Zr2O6.3 which is also crystallized in pyrochlore structure by further releasing oxygen. If this heating is carried out in presence of argon test gas, fluorite structure can easily change to pyrochlore Ce2Zr2O6.3 structure, which is a good electrical conductor. Due to its oxygen storage capability (OSC) and redox (Ce4+/Ce3+) properties, Ce0.5Zr0.5O2 had been used as oxygen storage material in three-way-catalyst. Importance of these reactions is that the O2 gas released from the compound will react with gas released from the heat shield materials, like NOx, CO and hydrocarbon (HCs) species which results in reduction of temperature in the shock layer of the re-entry space vehicle. The compound Ce0.5Zr0.5O2 changes its crystal structure from fluorite to pyrochlore phase in presence of shock heated test gas. The results presented in these two Chapters are first of their kind, which demonstrates the surface catalytic reactions. In Chapter 8, we present preliminary results of the oxygen recombination on the surface of heat shield material procured from Indian Space Research Organization (ISRO) used as TPS in re-entry space capsule (Space capsule Recovery Experiment SRE-1) and on thin film SiO2 deposited on silicon substrate. The formation of SiO between the junctions of SiO2/Si was confirmed using XPS study when shock exposed oxygen reacted on these materials. The surface morphology of the ablated SiO2 film was studied using SEM. The damage induced due to impact of shock wave in presence of oxygen gas was analyzed using Focused Ion Beam (FIB) microscope. The results reveal the damage on the surface of SiO2 film and also in the cross-section of the film. We are further investigating use of FIB, particularly related to residual stress developed on thin films due to high pressure and high temperature shock wave interaction. In Chapter 9, conclusions on the performance of FPST, synthesis of high temperature materials, catalytic and non-catalytic surface reactions on the high temperature material due to shock-heated test gases are presented. Possible scope for future studies is also addressed in this Chapter.
48

Vývoj pokročilých tepelně izolačních omítek s možností uplatnění jako sanační omítky dle WTA / Development of advanced thermal insulating plasters with utilization as sanitation plasters according to WTA standard

Vaněk, Lukáš January 2014 (has links)
The theoretical part of the thesis is devoted to the issue thermal insulation plasters which can be applied in the remediation of buildings. The practical part deals with optimizing the composition of thermal insulation plaster-based lightweight aggregate of the foam glass and with possible substitution of cement for other binders with latent hydraulic properties. The resultant plaster should meet the best ratio of mechanical and thermal insulating properties.

Page generated in 0.1038 seconds