• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 16
  • 14
  • 7
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 19
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Análise numérica e experimental na determinação da potência térmica dissipada em componentes eletrônicos /

Sousa, Reginaldo Ribeiro de. January 2008 (has links)
Orientador: Amarildo Tabone Paschoalini / Banca: Luiz de Paula do Nascimento / Banca: Marcelo Moreira Ganzarolli / Resumo: Os objetivos deste trabalho são determinar a potência térmica dissipada dos componentes eletrônicos de forma experimental e verificar a eficácia do método através de simulações numéricas computacionais utilizando o software comercial ANSYS. O Software ANSYS foi usado como ferramenta de Dinâmica de Fluidos Computacional neste trabalho. Para a realização deste trabalho um ensaio experimental foi executado a fim de obter alguns dados para o cálculo da potência térmica dissipada, outros foram fornecidos pelo CPqD e Trópico. Foi montado um Laboratório Computacional com o apoio da Trópico e do CPqD na UNESP, campus de Ilha Solteira para a simulações numéricas. O método de cálculo de potência apresentou-se eficaz, de modo na melhor situação os resultados apresentaram um erro relativo médio de 1,94%. / Abstract: The purpose of this study is to determine the thermal power dissipation of electronic components through an experimental test and verify the effectiveness of the method through numerical simulations using the computational software ANSYS commercial. Software ANSYS was used as a tool for Computational Fluid Dynamics for this work. For this work an experimental test was done to obtain some data to calculate the thermal power dissipation, others were supplied by CPqD, Nilko and Trópico. It was dubbed a Computer Laboratory with the support of the Trópico, CPqD and at UNESP, campus de Ilha Solteira for the numerical simulations. The method of calculation of power proved to be effective, that the better the results showed a mean relative error is 1.94%. / Mestre
42

Análise numérica e experimental na determinação da potência térmica dissipada em componentes eletrônicos

Sousa, Reginaldo Ribeiro de [UNESP] 28 November 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-11-28Bitstream added on 2014-06-13T19:55:37Z : No. of bitstreams: 1 sousa_rr_me_ilha.pdf: 2111422 bytes, checksum: 55ec661a37c8225f8f3075712c8ec225 (MD5) / Fundação de Ensino Pesquisa e Extensão de Ilha Solteira (FEPISA) / Os objetivos deste trabalho são determinar a potência térmica dissipada dos componentes eletrônicos de forma experimental e verificar a eficácia do método através de simulações numéricas computacionais utilizando o software comercial ANSYS. O Software ANSYS foi usado como ferramenta de Dinâmica de Fluidos Computacional neste trabalho. Para a realização deste trabalho um ensaio experimental foi executado a fim de obter alguns dados para o cálculo da potência térmica dissipada, outros foram fornecidos pelo CPqD e Trópico. Foi montado um Laboratório Computacional com o apoio da Trópico e do CPqD na UNESP, campus de Ilha Solteira para a simulações numéricas. O método de cálculo de potência apresentou-se eficaz, de modo na melhor situação os resultados apresentaram um erro relativo médio de 1,94%. / The purpose of this study is to determine the thermal power dissipation of electronic components through an experimental test and verify the effectiveness of the method through numerical simulations using the computational software ANSYS commercial. Software ANSYS was used as a tool for Computational Fluid Dynamics for this work. For this work an experimental test was done to obtain some data to calculate the thermal power dissipation, others were supplied by CPqD, Nilko and Trópico. It was dubbed a Computer Laboratory with the support of the Trópico, CPqD and at UNESP, campus de Ilha Solteira for the numerical simulations. The method of calculation of power proved to be effective, that the better the results showed a mean relative error is 1.94%.
43

Implementation of a Coupled Creep Damage Model in MOOSE Finite Element Framework: Application to Irradiated Concrete Structures

January 2020 (has links)
abstract: There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the advent of finite element analysis, a numerical predictive tool is desired that can predict the extent of damage in the nuclear concrete structure. A mesoscale micro-structural framework is proposed in Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element framework which represents the first step in this direction. As part of the framework, a coupled creep damage algorithm was developed and implemented in MOOSE. The algorithm considers creep through rheological models, while damage evolves exponentially as a function of elastic strain and creep strain. A characteristic length is introduced in the formulation such that the energy release rate associated with each element remains the same to avoid vanishing energy dissipation with mesh refinement. A creep damage parameter quantifies the effect of creep strain on the damage that was calibrated using three-point bending experiments with varying rates of loading. The creep damage model was also validated with restrained ring shrinkage tests on cementitious materials containing compliant/stiff inclusions subjected to variable drying conditions. The simulation approach explicitly considers: (i) moisture diffusion driven differential shrinkage along the depth of the specimen (ii) viscoelastic response of aging cementitious materials (iii) isotropic damage model with Rankine′s failure initiation criterion, and (iv) random distribution of tensile strengths of individual finite elements. The model was finally validated with experimental results on neutron-irradiated concrete. The simulation approach considers: (i) coupled hygro-thermal model to predict the temperature and humidity profile inside the specimen (ii) radiation-induced volumetric expansion of aggregates (RIVE) (iii) thermal, shrinkage and creep effects based on the temperature and humidity profile and (iv) isotropic damage model with Rankine’s criterion to determine failure initiation. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
44

Teplotní vlastnosti automobilových zdrojů světla - Halogenové zdroje / Thermal properties of automotive light sources - Halogen sources

Hlubinka, David January 2017 (has links)
The aim of master´s thesis is to get acquainted with the design and materials used in selected automotive light source – tungsten halogen lamp. Further, the thesis focused on the theory and appropriate selection of the thermal measurement method on a real sample. Subsequently, a model of the light source and its simulation in the ANSYS – Maxwell 3D and Mechanical programs are created. Finally, the results of the thermal simulation and the non-contact measurement of the tungsten halogen lamp are evaluated
45

Studie srovnání vlastností pouzder QFN a BGA / Study of BGA and QFN package properties

Skácel, Josef January 2015 (has links)
This work deals with the issue of packaging and heat transfer. Especially this work focused on QFN and BGA packages. Nowadays most sophisticated conventional solution. First part deals with analysis of the current status of packages. Next part is analyze the issue of heat transfer in electronic systems. The following section is an experimental dealing with simulation in ANSYS Workbench and validation of these simulations by designed test structures. At the end is evaluated properties and behavior of these packages.
46

Fluid-thermal co-simulation for a high performance concrete machine frame

Steiert, Christoph, Weber, Juliane, Galant, Alexander, Glänzel, Janine, Weber, Jürgen 25 June 2020 (has links)
Thermo-elastic errors are one of the main drivers for reduced quality of workpieces in machining. Cooling systems can prevent these errors and improve quality. The paper describes a simulation method that takes into account both the temperature field of a machine tool frame and the fluid cooling system. Such simulations can help to improve the thermal stability of the machine tool frame.
47

Implementierung und Validierung eines Algorithmus zur thermischen Simulation von transparenten Bauteilen für die energetische Ertüchtigung von Fenstern im Bestand

Conrad, Christian 21 July 2021 (has links)
Der Klimaschutz ist eine Herausforderung und eine Verantwortung insbesondere gegenüber den nachfolgenden Generationen. Ein Baustein zum Klimaschutz ist die erhebliche Senkung des Energieverbrauches der bestehenden Gebäude. Bei der Sanierung von älteren oder gar zu Denkmalen erklärten Gebäuden stellt die Erhaltung der Originalsubstanz und des Erscheinungsbildes erhöhte Anforderungen an alle am Bau Beteiligten. Für eine energetische Ertüchtigung von historischen Fenstern, welche auch zukünftigen Anforderungen an den Klimaschutz genügen, zeigt diese Arbeit, dass eine detaillierte Planung und eine bauphysikalische Betrachtung notwendig sind. Diese Arbeit leistet einen Beitrag, damit zukünftig das thermische Verhalten der einzelnen Bestandteile (Verglasung, Randverbund, Rahmen) des energetisch ertüchtigten Fensters realitätsnah simuliert und bewertet werden kann. Ausgehend von einer vorbildhaften energetischen Sanierung eines Baudenkmals, welche auch zukünftige Anforderungen an den Klimaschutz genügt, wurden die Erfahrungen der Herstellung der Hochleistungsfenster des Modellgebäudes über die Beobachtungen in einem Zeitraum von über 15 Jahren dargelegt. Bei der Literaturrecherche zum Stand der Wissenschaft und Technik zum Thema Berechnung und Simulation von transparenten Bauteilen wurde besonders auf die freie Konvektion im geschlossenen Scheibenzwischenraum eingegangen. Darauf beruhend wurden eine Parameterstudie und eine Bewertung der Konvektionsmodelle vorgenommen. Das am Institut für Bauklimatik entwickelte numerische Simulationsprogramm [DELPHIN] beruht auf der Finite-Volumen-Methode für opake Bauteile und berücksichtigt den gekoppelten Wärme-, Feuchte-, Luft- und Salztransport für 1D-, 2D- und 3D- Probleme. Dieses Programm wurde parallel zu dieser Arbeit durch das DELPHIN-Entwicklerteam auf der Grundlage der Validierungen mittels Messungen an den Fenstern des Modellgebäudes um die freie Konvektion im geschlossenen Hohlraum zu einem Programm zur Berechnung von transparenten Bauteilen weiterentwickelt. Zusätzlich können damit unter Berücksichtigung der Feuchtespeicherung hygrothermische Schadensprognosen in der Ingenieurpraxis vorgenommen werden. Im Vergleich zur CFD-Simulation wird nur ein Bruchteil der Rechenleistung und Rechenzeit benötigt. Der Ansatz, mit den Messungen der Oberflächentemperatur und der Globalstrahlung senkrecht zur Fassadenebene alle wesentlichen Parameter zu erfassen und durch Nachsimulation von Scheibenoberflächentemperaturen im Kastenzwischenraum das Simulationsmodell und das Programm zu validieren, hat sich bewährt. Durch die Validierung unter Realbedingungen steigt die Akzeptanz dieser Simulation vor allem in der Praxis. Das entwickelte Simulationsmodell stellt ein Werkzeug für die wissenschaftlich gestützte Weiterentwicklung moderner Fenster für die Industrie dar. Zukünftig soll es zur Optimierung von anderen transparenten Bauteilen wie z. B. der thermischen Solarkollektoren sowie der Kombination aus thermischen Solarkollektoren und PV-Kollektoren beitragen. Eine weitere Zielgruppe dieser Arbeit sind Fachplaner und Fachbetriebe, welche sich auf die energetische Sanierung von Bestandsfenstern spezialisiert haben. Die Simulationen der Kastenfenster haben gezeigt, dass bei der Bauteil- und Gebäudesimulation die Berücksichtigung der Absorption der kurzwelligen Strahlung und die daraufhin veränderten freien Konvektionen und der langwellige Strahlungsaustausch in den geschlossenen Hohlräumen nicht vernachlässigt werden können. Der Fehler bei dem Monatsbilanzverfahren zur Berechnung des Heizenergiebedarfes ist bei 2-Scheibenverglasungen noch vertretbar. Bei hochenergieeffizienten Mehrscheibenverglasungen sollte das normative statische Berechnungsverfahren zur U-Wertermittlung von transparenten Bauteilen Verglasungen vorzugsweise durch eine thermische Simulation ersetzt werden. Hierbei sind der Klimastandort und die Ausrichtung für die Absorption der kurzwelligen Strahlung zu berücksichtigen. Eine Vereinfachung für ein Monatsbilanzverfahren für die jeweiligen Klimastandorte der Testreferenzjahre (TRY) [DWD] ist vorstellbar. Bei der Bauteil- und Gebäudesimulation unter Verwendung von Stundenwerten und noch kleineren Zeitschritten sowie in der Hitzeperiode muss diese Modellerweiterung implementiert werden. Durch die realitätsnahe Simulation der Scheibenoberflächentemperaturen auf der Raumseite kann die Empfindungstemperatur berechnet und nachfolgend eine Behaglichkeitsbewertung durchgeführt werden. Die Untersuchungsergebnisse beim Modellgebäude und der Simulation fließen in Vorschläge zur energetischen Ertüchtigung von Bestandsfenstern mittels schmaler Wärmeschutzverglasung mit reduziertem Emissionsgrad ein. Auf der Grundlage dieses Modells kann das Optimum des Scheibenzwischenraumes der einzelnen Edelgase in Abhängigkeit der Neigung ermittelt werden. Das Modell gibt die Möglichkeit zur Bewertung und nachfolgend zur Minimierung von Schadprozessen, welche die Dauerhaftigkeit von transparenten Bauteilen beeinträchtigen. Für die Gebäudesimulation ist die Simulation der Wärmeströme der Verglasung und eine Betrachtung der Strahlungstransmission zu empfehlen. Die separate Simulation von U-Werten ist nicht zu bevorzugen.:1. Motivation, Ausgangssituation und Ziele 9 1.1. Motivation 9 1.2. Ziele, Thesen, Methodik und Relevanz des Dissertationsthemas 11 1.3. Strukturierung der Arbeit 16 2. Modellgebäude Handwerk 15 in Görlitz 17 2.1. Energetisches Gesamtkonzept 18 2.1.1. Dämmmaßnahmen 19 2.1.2. Erneuerung Anlagentechnik 20 2.2. Geschichte und Beurteilung des Denkmalwertes des Modellobjektes 24 2.3. Besondere Anforderungen an die Fenster am Beispiel des Gebäudes Handwerks 15 32 2.3.1. Brandschutzanforderungen 32 2.3.2. Schallschutzanforderungen 33 2.3.3. Belichtung 33 2.3.4. Architektonische Anforderungen-Beibehaltung des historischen Erscheinungsbildes 34 2.4. Energetische Ertüchtigung der Fenster des Modellgebäudes 37 2.4.1. Ausgangssituation 37 2.4.2. Verwendete Verglasung und Low-e-Beschichtung 39 2.4.3. Holz-Kastenfenster mit 2-Scheiben-Wärmeschutzverglasung aus Solarglas 41 2.4.4. Holz-Einfachfenster mit 3-Scheiben-Wärmeschutzverglasung aus Solarglas 44 2.5. Messungen und Beobachtungen am Modellgebäude 46 2.5.1. Messkonzept und Dokumentation des Monitorings und Messerfassungssystems 47 2.5.2. Messaufbau zur Erfassung des Innen- und Außenklimas 48 2.5.3. Bauteilmessstrecke Kastenfenster, 2. OG Nord 50 2.5.4. Bauteilmessstrecke Kastenfenster, 1. DG Süd 54 2.5.5. Bauteilmessstrecke Dachliegefenster, Nord, 2. DG 57 2.5.6. Beschreibung von bauphysikalischen Vorgängen bei den Verglasungen 63 2.5.7. Beschreibung von physikalischen Schadprozessen bei Fenstern 65 2.5.8. Zusammenfassung und Fazit aus den Messungen und den Beobachtungen 70 3. Stand der Wissenschaft und Technik 71 3.1. Aktuelle europäische Normung 72 3.2. Analytisches Modell für die Konvektion innerhalb des Scheibenzwischenraumes 78 3.3. Modell nach ISO 15 099 88 3.4. Modell nach Hollands, Unny, Raithby und Konicek u. a. 90 3.5. Modellzusammenstellung nach Klan und Thess 93 3.6. CFD-Simulationen von Mehrscheibenverglasungen 96 3.6.1. CFD-Simulationen im Vergleich zur DIN EN 673 96 3.6.2. CFD-Simulationen in Kombination mit Messungen im Versuchsstand 102   3.7. Übersicht über die Umsetzung der Verglasungsmodelle in den Computerprogrammen 104 3.7.1. Programm glaCE 3.03 von Glas-Trösch 105 3.7.2. Programm Calumen II 1.3.3/ CalumenLive von SAINT-GOBAIN GLASS 105 3.7.3. Programmpaket Optics, Windows und Therm mit Übergabe in Energy Plus 105 3.7.4. Einzonensimulationsprogramm Therakles 3.0 vom Institut für Bauklimatik 110 3.7.5. Programme der Energieeinsparverordnung 111 3.7.6. Programmpaket PHPP 8 111 3.7.7. Übersicht über die Software zur Berechnung von Verglasungskennwerten 112 3.8. Übersicht über die thermische Beanspruchung von Verglasungen 113 4. Vergleich und Bewertung der Konvektionsmodelle 117 4.1. Analytische Konvektionsmodelle 117 4.2. CFD–Simulation mit EasyCFD 124 4.3. Zusammenfassung und Bewertung der Konvektionsmodelle 125 5. Herleitung und Anwendung des Simulationsmodells 127 5.1. Benennung und Beschreibung der Wärmetransportmechanismen 127 5.2. Algorithmus zur thermischen Simulation von transparenten Bauteilen 140 5.3. Auswertung der Messung und der Simulation bei Kastenfenstern 148 5.4. Validierte thermische Simulation der Kastenfenster 156 5.5. Auswertung der Messung bei dem Dachliegefenster 160 6. Energetische Ertüchtigung von Bestandsfenstern 163 6.1. Situation bei Bestandsfenstern 164 6.2. Beispiele für die energetische Fenstersanierung 166 6.2.1. Bestandskastenfenster 167 6.2.2. Kastenfenster mit K-Glass™ 171 6.2.3. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Innenflügelpaar 174 6.2.4. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Außenflügelpaar 178 6.2.5. Energetische Ertüchtigung durch zusätzliche Fensterebene 182 6.3. Ergebnisse der umgesetzten energetischen Ertüchtigung von Bestandsfenstern 186 7. Zusammenfassung und Ausblick 187 Literaturverzeichnis 189 Anhang 197 Anhang I. Begriffe und Kennzahlen der Strömungsmechanik 197 Anhang II. Eigenschaften von Gasen nach DIN EN 673 199 Anhang III. Berechnung des optimalen Scheibenabstandes 202 Anhang IV. Simulation des optimalen Scheibenabstandes 205 Anhang V. Hinweise zur statistischen Auswertung 208 / Climate protection is a challenge and a responsibility, especially towards future generations. One component of climate protection is the considerable reduction of the energy consumption of existing buildings. When renovating older buildings or even buildings that have been declared monuments, the preservation of the original substance and appearance places increased demands on all those involved in the construction. For an energetic retrofitting of historic windows, which also meet future requirements for climate protection, this work shows that a detailed planning and a structural-physical consideration are necessary. This work makes a contribution so that in the future the thermal behavior of the individual components (glazing, edge seal, frame) of the energetically upgraded window can be realistically simulated and evaluated. Based on an exemplary energetic refurbishment of an architectural monument, which also meets future climate protection requirements, the experiences of the production of the high-performance windows of the model building were presented via the observations over a period of more than 15 years. During the literature research on the state of the art in science and technology on the subject of calculation and simulation of transparent building components, special attention was paid to free convection in the closed space between the panes. Based on this, a parameter study and an evaluation of convection models were carried out. The numerical simulation program [DELPHIN] developed at the Institute of Building Climatology is based on the finite volume method for opaque building components and considers the coupled heat, moisture, air and salt transport for 1D, 2D and 3D problems. This program was further developed in parallel to this work by the DELPHIN development team on the basis of validations by means of measurements at the windows of the model building around the free convection in the closed cavity to a program for the calculation of transparent building components. In addition, hygrothermal damage predictions can be made in engineering practice with this program, taking moisture storage into account. Compared to CFD simulation, only a fraction of the computing power and computing time is required. The approach to capture all essential parameters with measurements of surface temperature and global radiation perpendicular to the facade plane and to validate the simulation model and the program by post-simulation of pane surface temperatures in the inter-box space has proven to be successful. The validation under real conditions increases the acceptance of this simulation, especially in practice. The developed simulation model represents a tool for the scientifically supported further development of modern windows for the industry. In the future, it should contribute to the optimization of other transparent components such as thermal solar collectors as well as the combination of thermal solar collectors and PV collectors. Another target group of this work are professional planners and specialized companies, which have specialized in the energetic renovation of existing windows. The simulations of the box-type windows have shown that in the component and building simulation, the consideration of the absorption of short-wave radiation and the resulting changes in free convection and long-wave radiation exchange in the closed cavities cannot be neglected. The error in the monthly balance method for the calculation of the heating energy demand is with 2-pane glazing is still acceptable. In the case of highly energy-efficient multi-pane glazing, the normative static calculation procedure should be used for the U-value calculation of transparent glazing components should preferably be replaced by a thermal simulation. Here, the climatic location and orientation should be taken into account for the absorption of short-wave radiation. A simplification for a monthly balance procedure for the respective climate locations of the test reference years (TRY) [DWD] is conceivable. For the component and building simulation using hourly values and even smaller time steps as well as in the heat period, this model extension has to be implemented. By the realistic simulation of the pane surface temperatures on the room side, the sensation temperature can be calculated and subsequently a comfort evaluation can be carried out. The results of the investigations in the model building and the simulation are incorporated into proposals for the energy upgrading of existing windows by means of narrow thermal insulation glazing with reduced emissivity. On the basis of this model, the optimum of the space between the panes of the individual noble gases can be determined as a function of the inclination. The model gives the opportunity to evaluate and subsequently minimize damage processes that affect the durability of transparent building components. For the building simulation, the simulation of the heat fluxes of the glazing and a consideration of the radiation transmission is recommended. The separate simulation of U-values is not to be preferred. The advice on the design or evaluation of the impairment due to condensation and frost formation on the outside of the glazing of transparent constructions should be continued by implementing the slope dependence of convection in the software and a validation by comparing measurement and simulation.:1. Motivation, Ausgangssituation und Ziele 9 1.1. Motivation 9 1.2. Ziele, Thesen, Methodik und Relevanz des Dissertationsthemas 11 1.3. Strukturierung der Arbeit 16 2. Modellgebäude Handwerk 15 in Görlitz 17 2.1. Energetisches Gesamtkonzept 18 2.1.1. Dämmmaßnahmen 19 2.1.2. Erneuerung Anlagentechnik 20 2.2. Geschichte und Beurteilung des Denkmalwertes des Modellobjektes 24 2.3. Besondere Anforderungen an die Fenster am Beispiel des Gebäudes Handwerks 15 32 2.3.1. Brandschutzanforderungen 32 2.3.2. Schallschutzanforderungen 33 2.3.3. Belichtung 33 2.3.4. Architektonische Anforderungen-Beibehaltung des historischen Erscheinungsbildes 34 2.4. Energetische Ertüchtigung der Fenster des Modellgebäudes 37 2.4.1. Ausgangssituation 37 2.4.2. Verwendete Verglasung und Low-e-Beschichtung 39 2.4.3. Holz-Kastenfenster mit 2-Scheiben-Wärmeschutzverglasung aus Solarglas 41 2.4.4. Holz-Einfachfenster mit 3-Scheiben-Wärmeschutzverglasung aus Solarglas 44 2.5. Messungen und Beobachtungen am Modellgebäude 46 2.5.1. Messkonzept und Dokumentation des Monitorings und Messerfassungssystems 47 2.5.2. Messaufbau zur Erfassung des Innen- und Außenklimas 48 2.5.3. Bauteilmessstrecke Kastenfenster, 2. OG Nord 50 2.5.4. Bauteilmessstrecke Kastenfenster, 1. DG Süd 54 2.5.5. Bauteilmessstrecke Dachliegefenster, Nord, 2. DG 57 2.5.6. Beschreibung von bauphysikalischen Vorgängen bei den Verglasungen 63 2.5.7. Beschreibung von physikalischen Schadprozessen bei Fenstern 65 2.5.8. Zusammenfassung und Fazit aus den Messungen und den Beobachtungen 70 3. Stand der Wissenschaft und Technik 71 3.1. Aktuelle europäische Normung 72 3.2. Analytisches Modell für die Konvektion innerhalb des Scheibenzwischenraumes 78 3.3. Modell nach ISO 15 099 88 3.4. Modell nach Hollands, Unny, Raithby und Konicek u. a. 90 3.5. Modellzusammenstellung nach Klan und Thess 93 3.6. CFD-Simulationen von Mehrscheibenverglasungen 96 3.6.1. CFD-Simulationen im Vergleich zur DIN EN 673 96 3.6.2. CFD-Simulationen in Kombination mit Messungen im Versuchsstand 102   3.7. Übersicht über die Umsetzung der Verglasungsmodelle in den Computerprogrammen 104 3.7.1. Programm glaCE 3.03 von Glas-Trösch 105 3.7.2. Programm Calumen II 1.3.3/ CalumenLive von SAINT-GOBAIN GLASS 105 3.7.3. Programmpaket Optics, Windows und Therm mit Übergabe in Energy Plus 105 3.7.4. Einzonensimulationsprogramm Therakles 3.0 vom Institut für Bauklimatik 110 3.7.5. Programme der Energieeinsparverordnung 111 3.7.6. Programmpaket PHPP 8 111 3.7.7. Übersicht über die Software zur Berechnung von Verglasungskennwerten 112 3.8. Übersicht über die thermische Beanspruchung von Verglasungen 113 4. Vergleich und Bewertung der Konvektionsmodelle 117 4.1. Analytische Konvektionsmodelle 117 4.2. CFD–Simulation mit EasyCFD 124 4.3. Zusammenfassung und Bewertung der Konvektionsmodelle 125 5. Herleitung und Anwendung des Simulationsmodells 127 5.1. Benennung und Beschreibung der Wärmetransportmechanismen 127 5.2. Algorithmus zur thermischen Simulation von transparenten Bauteilen 140 5.3. Auswertung der Messung und der Simulation bei Kastenfenstern 148 5.4. Validierte thermische Simulation der Kastenfenster 156 5.5. Auswertung der Messung bei dem Dachliegefenster 160 6. Energetische Ertüchtigung von Bestandsfenstern 163 6.1. Situation bei Bestandsfenstern 164 6.2. Beispiele für die energetische Fenstersanierung 166 6.2.1. Bestandskastenfenster 167 6.2.2. Kastenfenster mit K-Glass™ 171 6.2.3. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Innenflügelpaar 174 6.2.4. Kastenfenster mit Wärmeschutzverglasung und K-Glass im Außenflügelpaar 178 6.2.5. Energetische Ertüchtigung durch zusätzliche Fensterebene 182 6.3. Ergebnisse der umgesetzten energetischen Ertüchtigung von Bestandsfenstern 186 7. Zusammenfassung und Ausblick 187 Literaturverzeichnis 189 Anhang 197 Anhang I. Begriffe und Kennzahlen der Strömungsmechanik 197 Anhang II. Eigenschaften von Gasen nach DIN EN 673 199 Anhang III. Berechnung des optimalen Scheibenabstandes 202 Anhang IV. Simulation des optimalen Scheibenabstandes 205 Anhang V. Hinweise zur statistischen Auswertung 208
48

Modelagem e simulação da operação de sistema antigelo eletrotérmico de um aerofólio. / Modeling and simlulation of an electro-thermal airfoil anti-ice system operation.

Silva, Guilherme Araújo Lima da 11 March 2002 (has links)
No presente trabalho foi implementado um modelo matemático para simular o sistema antigelo eletrotérmico de um aerofólio. Por meio do programa ONERA2D simulou-se o escoamento potencial completo com velocidade 44,7 m/s (100 mph) e 89,4 m/s (200 mph) em torno de um aerofólio perfil NACA0012 de corda 0,914 m (3 pés) com ângulo de ataque de 0°, e calculou-se a eficiência de coleta local de gotículas de água com diâmetro mediano volumétrico de 20 μm. Foram simuladas quatro condições de teste com diferentes distribuições de fluxo de calor nos aquecedores elétricos do sistema antigelo. O modelo previu a distribuição de temperaturas na superfície sólida do aerofólio e no filme de água líquida, e as distribuições de fluxo de água líquida sobre a superfície do aerofólio (\"runback water\") e de coeficiente de transferência de calor por convecção de calor entre a superfície do aerofólio e o escoamento gasoso. Os resultados da simulação obtidos com o modelo foram comparados com resultados experimentais da NASA e os resultados numéricos dos programas LEWICE/ANTICE (EUA) e CANICE (Canada). Para as regiões molhadas pelo filme de água líquida, obteve-se um desvio máximo de temperatura de 2,6°C entre os resultados do presente modelo e o resultados experimentais. Para as regiões secas, onde não existe o filme de água líquida sobre a superfície do aerofólio, obteve-se um desvio de máximo de temperatura de 8°C. As previsões para distribuição de vazão de \"runback\", posição do término do filme de água líquida foram comparadas com os resultados do programa LEWICE/ANTICE. O modelo desenvolvido simula com adequada aproximação os efeitos da transferência de calor e de massa por convecção entre a superfície não-isotérmica do aerofólio ou do filme de água líquida e o escoamento gasoso, bem como os efeitos da transição entre o escoamento laminar e o turbulento na camada limite dinâmica e térmica e ainda a influência do escoamento do filme de água líquida sobre o desempenho do sistema de antigelo do aerofólio. / An electro-thermal anti-ice system was simulated with a mathematical model developed in the present work. A 44.7 m/s (100 mph) and 89.4 m/s (200 mph) full potential flow around a 0.914 m (3 ft) chord NACA0012 airfoil with 0° angle of attack and the local water catch efficiency of 20 μm median volumetric diameter droplets impingement were calculated by the numerical code ONERA2D. Four test conditions were simulated with four different heat flux distributions of the anti-ice system according to the experimental work developed at NASA. The model predicted distributions of solid surface and liquid water film temperatures, runback water flow and convection heat transfer coefficient between airfoil or water surface and gaseous flow. The simulated results obtained by the mathematical model developed were compared to NASA experimental results and the ones predicted by the numerical codes LEWICE/ANTICE (US) and CANICE (Canada). For the regions wetted by the water film, the present model provided 2.6°C maximum temperature deviations between the predicted results and experimental data. For the dry regions, where there is no liquid water on the airfoil surface, an 8°C maximum temperature deviation was obtained. The runback flow and water film ending point position were compared to LEWICE/ANTICE numerical results. The developed model predicts adequately the convection heat and mass transfer effects between the non-isothermal airfoil or liquid water film surface and the gaseous flow, as well the effects of laminar to turbulent flow transition within dynamic and thermal boundary layer and the influence of the liquid water film flow on the anti-ice system performance.
49

Évaluation expérimentale et par simulation des performances thermiques de techniques passives appliquées aux toitures pour le rafraîchissement des bâtiments en climat chaud / Thermal and energy performance assessment of some passive cooling techniques in the building under a hot and semi-arid climate

Kachkouch, Salah 14 December 2018 (has links)
Le bâtiment est l'un des secteurs les plus consommateurs d'énergie et producteurs de CO2 au monde. Au Maroc, ce secteur représente actuellement 33% de la consommation totale d’énergie à l'échelle nationale. Le nouveau règlement thermique au Maroc vise à introduire des pratiques éco énergétiques dans ce secteur pour réduire ces consommations. En effet, dans la région méditerranéenne, l’architecture du bâtiment a un impact primordial sur sa performance énergétique et thermique. Par ailleurs, l’intégration des techniques passives et l’utilisation des matériaux locaux pourraient réduire considérablement la consommation d’énergie dans le secteur du bâtiment. C’est dans ce contexte que se situe cette thèse de doctorat dont l’objectif est d’évaluer la capacité de rafraîchissement de quelques techniques passives pour la protection solaire des toitures et de montrer l’importance de l’utilisation des matériaux naturels locaux dans le climat chaud et semi-aride de Marrakech. En effet, trois techniques passives de rafraîchissement de l'air dans les bâtiments sont testées dans des conditions climatiques réelles dans la ville de Marrakech. Les techniques passives, à savoir la peinture blanche, l'ombrage et l'isolation thermique, sont appliquées sur les toits de trois cellules test métalliques placées à l’extérieur. Les performances thermiques de ces techniques sont évaluées simultanément via un monitoring de 29 jours d’été de quatre cellules test identiques, dont une cellule test de référence à toit nu (sans traitement). Ces cellules test ne représentent pas des bâtiments réels là où nous pouvons mener une étude approfondie. Pour cela, nous avons construit un bâtiment réel qui représente une salle de classe dans le milieu rural du Sud marocain, et ceci en utilisant des matériaux naturels et en intégrant des techniques passives dans la toiture. Les performances thermiques et énergétiques des mêmes techniques sont évaluées par le biais des simulations thermiques dynamiques sur l’outil TRNSYS ainsi qu’une étude expérimentale. / The building is one of the most energy-consuming and CO2-producing sectors in the world. Nowadays, this sector accounts for 33% of total energy consumption in Morocco. The new thermal regulation in Morocco aims to introduce eco-energy practices in this sector to reduce this consumption. Indeed, in the Mediterranean region, building architecture has a major impact on its energy and thermal performance. In addition, the integration of passive techniques and the use of local materials could significantly reduce energy consumption in the building sector. In this context where this thesis is located and whose objective is to evaluate the cooling capacity of some passive techniques for the solar protection of roofs and to show the importance of the use of local natural materials in the hot and semi-arid climate of Marrakech. Indeed, three passive cooling techniques are tested in real conditions in the Marrakech region. Passive techniques, namely white paint, shading and thermal insulation, are applied to the roofs of three outside test cells. The thermal performances of these techniques are evaluated simultaneously via a 29-day summer monitoring of four identical test cells, including a bare roof reference test cell (without treatment). Small scale test cells do not represent real buildings where an in-depth study can be conducted. To remedy this, we built a single-zone building that represents a classroom in rural region in southern Morocco, using natural materials and incorporating passive techniques into the roof. The thermal and energetic performances of the same techniques are evaluated by means of dynamic thermal simulations on TRNSYS as well as an experimental study.
50

Développement d'un label énergétique destiné aux bâtiments résidentiels de la région Est-Méditerranée (Syrie et Liban) / Development of an energy label applied to residential buildings of the East Mediterranean region (Syria, Lebanon)

Salama, Mothanna 10 December 2014 (has links)
Dans les pays importateurs d’énergie de la région Est-Méditerranée, comme la Syrie et le Liban, le secteur du bâtiment est le plus gros consommateur d’énergie. Une extension urbaine dynamique et une croissance démographique importante sont les caractéristiques des villes côtières de cette région, avec une absence totale d’application de règlements thermiques ou énergétiques pour les constructions. L’objectif de ce travail est de mettre en place une certification énergétique pour les bâtiments résidentiels neufs dans la région côtière de l’Est-Méditerranée. Pour atteindre cet objectif, nous avons réalisé une série d’enquêtes sur le terrain pour mettre en évidence les problématiques énergétiques des bâtiments résidentiels dans la ville de Tartous, et établir une base de données servant de référentiel sur les modes de construction, les systèmes énergétiques accessibles et les usages des occupants. Le choix de la RT2012 est le résultat d’une analyse critique et comparative des six labels les plus répandus dans le monde, en vue d’une extension à la région Est-Méditerranée. L’originalité de notre travail est d’aborder la réalité du terrain en adoptant un outil de STD et en nous appuyant sur les spécificités de fonctionnement et d’usage du bâtiment et ses équipements de chauffage, de climatisation, d’eau chaude sanitaire et d’électroménager. Les limites d’amélioration de la performance énergétique, due à l’utilisation des solutions techniques accessibles sur le site, avec un valorisation globale des points de vue énergétique, économique et de confort, nous permettront de déterminer les nouvelles valeurs des indices réglementaires caractérisant notre nouveau label énergétique RT2012-EM. Ce label énergétique, destiné aux différents acteurs du bâtiment pour la conception de bâtiments résidentiels neufs, vise à promouvoir une politique d’utilisation rationnelle de l’énergie, grâce à des bâtiments à basse consommation énergétique. / In the countries which importing energy in the region of the East-Mediterranean, such as Syria and Lebanon, the building sector is the largest consumer of energy . A dynamic urban expansion and population growth are important characteristics of the coastal towns of this region, with a total lack of application of heat or energy regulations for buildings. The objective of this work is to develop an energy certification for new residential buildings in the coastal region of East Mediterranean. To achieve this goal, we conducted a series of field surveys to highlight energy issues of residential buildings in the city of Tartous, and establish a database for the repository construction methods, energy systems access and usage of the occupants. The choice of the RT2012 is the result of a critical and comparative analysis of the six most popular labels in the world, for an extension to the East Mediterranean region. The originality of our work is to address the reality of the field by adopting a tool of a dynamic thermal simulation and relying on the specific operation and use of the building and equipment of heating, cooling, hot water and appliances. The limits of improving energy performance, due to the use of available technical solutions on site, with a total valuation of viewpoints energy, economic and comfort, will let us determine the new values of the regulatory indices of our new RT2012-EM energy label. The energy label for the different actors of the building to the design of new residential buildings, designed to promote a policy of rational use of energy, through buildings with low energy consumption.

Page generated in 0.5121 seconds