• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 753
  • 238
  • 139
  • 85
  • 26
  • 26
  • 26
  • 26
  • 26
  • 25
  • 19
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 1798
  • 215
  • 190
  • 176
  • 159
  • 142
  • 135
  • 126
  • 117
  • 116
  • 113
  • 108
  • 104
  • 103
  • 103
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
761

Prédiction des morphologies de nanoparticules métalliques à partir de calculs DFT des interactions surface-ligand / Predicting metallic nanoparticle morphologies from DFT calculations of surface-ligand interactions

Nguyen, Van Bac 30 November 2016 (has links)
Les nanoparticules (NPs) sont des matériaux fonctionnels importants du fait de leur taille nanométrique. Cette réduction en taille, associée à la composition, à l'orientation des surfaces et à la morphologie contribue à l'exaltation de nombreuses propriétés importantes telles que les propriétés électroniques, magnétiques, catalytiques, optiques, etc. Pour contrôler la morphologie des NPs, de nombreux efforts ont été consacrés à comprendre leurs mécanismes de formation et l'origine de leur stabilité. Parmi les nanoparticules métalliques, le cobalt, avec sa structure hexagonale compact (hcp), est particulièrement intéressant pour la possibilité d'obtenir des nanocristaux de forme "naturellement" anisotropique. Par synthèse chimique en milieu liquide, des NPs de différentes morphologies telles que des disques, des plaques, des bâtonnets, des fils et des cubes ont été obtenues en contrôlant le type de précurseur, de l'agent réducteur, des ligands stabilisants, ainsi que la concentration de ces ligands, la température ou la vitesse d'injection des précurseurs. Même si ces conditions de synthèse ont été rationalisées, les mécanismes à l'origine de ces différentes morphologies ne sont pas encore bien connus. Dans ce travail, nous avons développé deux modèles quantitatifs pour la prédiction de la morphologie, l'un est basé sur l'équilibre thermodynamique de l'état final, et l'autre sur un contrôle par l'effet cinétique. Pour appliquer ces modèles, il a été nécessaire de calculer dans un premier temps, avec la théorie de la fonctionnelle de la densité (DFT), les comportements d'adsorption des molécules ligands en fonction du taux de recouvrement sur les facettes de différentes orientations du métal. Pour ce faire, l'adsorption des ligands CH 3 NH 2 , CH 3 COO, C 5 H 11 COO et C 11 H 23 COO a été modélisée sur les différentes surfaces de Co et de Ni. La morphologie des NPs de Co prédite par ces deux modèles a été comparée à celles obtenues expérimentalement et à d'autres résultats théoriques de la littérature. La variété des formes obtenues par le modèle cinétique semblerait mieux correspondre aux NPs synthétisées avec les différentes conditions expérimentales. Ceci confirme que la morphologie des NPs est guidée avant tout par un effet cinétique. / Nanoparticles are one of the most important families of functional materials due to their nanometric size. This size reduction, associated to their composition, surfaces orientation and morphology has contributed to the emergence of new important properties such as electronic, magnetic, catalytic, optic, etc. To control the morphology of NPs, many efforts have been devoted to understand their formation mechanism and the origin of their stability. Among metallic nanoparticles, cobalt, with its hexagonal closed-packed (hcp) structure, is particularly interesting because of the possibility to grow "naturally" anisotropic shaped nanocrystals. Using chemical synthesis in liquid environment, various morphologies such as disks, plates, rods, wires and cubes have been obtained by controlling the precursor type, the reducing agent, the stabilizing ligands as well as their concentration, the temperature or the rate of precursor injection. Even if these synthesis conditions have been rationalized, few is known concerning the growth mechanisms at the atomic scale. In this work, we have developed two quantitative morphology prediction models, one based on the final thermodynamic equilibrium state, while another is controlled by the kinetics. These models require the knowledge of the adsorption behaviors of stabilizing molecules as a function of surface coverage on preferential facets of NPs. To this end, density functional theory (DFT) calculations were performed on a series of stabilizing molecules (CH3NH2 , CH3COO C5H11OO and C11H23COO) adsorbed on the different Co and Ni surfaces. The shape of the Co NPs obtained by these two models was compared to experimental morphologies and other theoretical results from the literature. The variety of forms predicted by the kinetic model agrees better with the NPs morphologies obtained under the different synthesis conditions. This confirms that the morphology control of NPs is mostly driven by the kinetics.
762

El Niño Southern Oscillation (ENSO) and atmospheric transport over Southern Africa

Kanyanga, Joseph Katongo 16 November 2009 (has links)
PhD. (Environmental Management) / This research investigates associations between El Niño Southern Oscillation (ENSO) phases and the occurrence of an unusual atmospheric transport patterns over southern Africa, observed during the SAFARI 2000 field campaign. This transport pattern manifested itself as a smoke and hazeladen flow, originating from the sub-equatorial tropical regions over northern Angola and western Zambia, and traversing the subcontinent with exit off the south-east coast over southern Mozambique and northern KwaZulu-Natal into the Indian Ocean. This pattern has been dubbed The River of Smoke. This pattern is distinctly different from the continental re-circulation pattern associated with continental high-pressure systems over the subtropical sub-region, which is the prevalent system according to current literature. The period during which the SAFARI 2000 campaign was conducted happened to be at the height of the strong 1999/2000 La Niña episode, associated with excessively wet conditions over the sub-continent. In contrast, during an earlier field campaign, SAFARI’92, the continental re-circulation transport mode, termed the gyre, was observed to prevail over the subtropical sub-region. SAFARI’92 coincided with the 1991/1992 El Niño episode that resulted in drought conditions over much of southern Africa. These observations triggered the current investigation of the causal associations and frequencies of the River of Smoke flow with phases of the ENSO. This study has employed conventional and modeled methods of meteorological analysis to investigate the influence of ENSO on atmospheric transport and synoptic coupling mechanisms, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) forward trajectory computations supported by an enhanced method of cluster analysis were used to determine and characterize the mean atmospheric transport modes over the subcontinent. Trajectories were calculated originating at two source points, representative of the tropical and subtropical subregions respectively (Mongu, Zambia; and Tshane, Botswana). Three study years were selected, corresponding to three distinct phases of ENSO: an El Niño episode during 1991/1992, a neutral ENSO episode during 1996/1997, and a La Niña episode during 1999/2000. The National Center for Environmental Prediction (NCEP)/ National Center for Atmospheric Research (NCAR) Reanalysis model is employed to reproduce mean composite synoptic circulation fields over southern Africa during the three periods. Findings show that for airflows originating over tropical southern Africa, the Indian Ocean fast exit pathway is unique to the neutral ENSO phase, while the continental re-circulation transport mode exhibits zero occurrences during the neutral phase. A continental re-circulation transport mode in the lower troposphere was observed during the El Niño and La Niña extremes, but with low annual frequencies (less than 30%). The direct Atlantic Ocean, the north-west and the Indian Ocean slow exit pathways are common to all three ENSO phases. For airflows originating over the subtropical sub-region, the continental re-circulation transport mode has the highest vi frequencies during all three ENSO phases, more especially during the El Niño episode, with more than 50% annual frequency, as observed during SAFARI’92. The north-west, Indian Ocean slow and Indian Ocean fast pathways are observed during all the three ENSO phases, with lower overall frequencies. The anticyclonic circulation flows are driven by the strengthened high-pressure systems over southern Africa: the semi-permanent subtropical high-pressure systems over the adjacent oceans (Atlantic Ocean High and Indian Ocean High) and the transient cut-off continental high-pressure systems. Airflows exiting toward the Indian Ocean have been described previously. In this work, a novel distinction is made between the Indian Ocean fast and the Indian Ocean slow exit pathways. The Indian Ocean slow corresponds to the conventional off-coast flow, such as observed during SAFARI’92. The Indian Ocean fast exit pathway is a newly described transport mode, which results from strong coupling between the subtropical circulation systems and the mid-latitude westerly flows. This strong-coupling induced transport mechanism provides favourable conditions for transport of mass fluxes, such as fire emissions originating from the tropical sub-region, towards the Indian Ocean. The Indian Ocean fast exit transport mode is characterized by higher speeds while exiting off the south-east coast, and extends further into the temperate latitudes towards Australia. When coupled with tropical sub-region, this flow mode is responsible for the occurrence of the River of Smoke phenomenon identified during SAFARI 2000. This Indian Ocean fast transport mode is intermittent in nature, and couples to the tropical sub-region only during the neutral ENSO episode, during which it exhibits low monthly frequencies, mainly during the dry season July through October. The intermittent nature, dependent on ENSO phases, and the associated low frequencies, may explain why it was observed in SAFARI 2000, but escaped observation and comment during previous studies, such as SAFARI’92.
763

Exploring the fluid landscape: three new regimes of relativistic hydrodynamics

Hernandez, Juan 22 August 2017 (has links)
In this work, we use the recently developed equilibrium generating functional and systematic derivative expansion approach to hydrodynamics to explore three new regimes of relativistic hydrodynamics. First, we derive the equations of motion and write the constitutive relations to first order in derivatives for relativistic fluids coupled to an external vector field. Next, for relativistic fluids in strong magnetic fields B ~ O(1), we derive the equations of motion and present the constitutive relations to first order in derivatives. From the resulting system of equations, we find the hydrodynamic modes for these systems. We also find the constraints on the transport coefficients due to the entropy production argument and derive the corresponding Kubo formulas. Finally, we repeat the same analysis for relativistic fluids coupled to dynamical electromagnetic fields with <B> ~ O(1). / Graduate
764

A study of petrol and diesel fuel blends with special reference to their thermodynamic propeties and phase equilibria

Hayward, Caroline January 1986 (has links)
The ternary phase behaviour of the n-heptane-l-propanol-water system was studied and compared with the theoretical prediction based on the UNIQUAC model for non-electrolyte solutions. The results showed that this model adequately approximated experimental studies. The excess enthalpies and excess volumes for several binary mixtures were determined. The excess enthalpies were measured using a LKB flow microcalorimeter and the excess -volumes determined using a PAAR densitometer. The study showed that no significant enthalpy or volume changes occurred when petrol/n-heptane were mixed with alcohols . Ternary phase diagrams, including tie lines have been determined for a number of petrol-alcohol-water systems (including the Sasol blend of alcohols). The tie line results show that the concentration of water in the water-rich layer is strongly dependent on the type of alcohol used. The Sasol alcohol blended with petrol resulted in a high water concentration in the water-rich layer which forms on phase separation. This is believed to contribute significantly to the corrosion problems experienced by motorists using the Sasol blended fuel on the Witwatersrand. The effect of temperature on several of these blends was included in the study. Diesel-alcohol blends and the co-solvent properties of ethyl acetate investigated. Ethyl acetate ensures miscibility at low concentrations for diesel-ethanol blends. Octyl nitrate and two cetane improvers from AECI were assessed in terms of their ability to restore cetane rating of blended diesel fuel to that of pure diesel fuel. The results indicated that all three samples were successful in this application. / KMBT_363
765

The AI-Pt-Ru ternary phase diagram

Prins, Sara Natalia 19 September 2005 (has links)
No abstract available. / Dissertation (MSc (Metallurgy))--University of Pretoria, 2006. / Materials Science and Metallurgical Engineering / unrestricted
766

Energy Storage Materials: Insights From ab Initio Theory : Diffusion, Structure, Thermodynamics and Design.

Araújo, Rafael Barros Neves de January 2017 (has links)
The development of science and technology have provided a lifestyle completely dependent on energy consumption. Devices such as computers and mobile phones are good examples of how our daily life depends on electric energy. In this scenario, energy storage technologies emerge with strategic importance providing efficient ways to transport and commercialize the produced energy. Rechargeable batteries come as the most suitable alternative to fulfill the market demand due to their higher energy- and power- density when compared with other electrochemical energy storage systems. In this context, during the production of this thesis, promising compounds for advanced batteries application were investigated from the theoretical viewpoint. The framework of the density functional theory has been employed together with others theoretical tools to study properties such as ionic diffusion, redox potential, electronic structure and crystal structure prediction. Different organic materials were theoretically characterized with quite distinct objectives. For instance, a protocol able to predict the redox potential in solution of long oligomers were developed and tested against experimental measurements. Strategies such as anchoring of small active molecules on polymers backbone have also been investigated through a screening process that determined the most promising candidates. Methods such as evolutionary simulation and basin-hopping algorithm were employed to search for global minimum crystal structures of small molecules and inorganic compounds working as a cathode of advanced sodium batteries. The crystal structure evolution of C6Cl4O2 upon Na insertion was unveiled and the main reasons behind the lower specific capacity obtained in the experiment were clarified. Ab initio molecular dynamics and the nudged elastic band method were employed to understand the underlying ionic diffusion mechanisms in the recently proposed Alluaudite and Eldfellite cathode materials. Moreover, it was demonstrated that electronic conduction in Na2O2, a byproduct of the Na-O2 battery, occurs via hole polarons hopping. Important physical and chemical insights were obtained during the production of this thesis. It finally supports the development of low production cost, environmental friendliness and efficient electrode compounds for advanced secondary batteries.
767

Thermodynamic & Kinetic Characterization Of The Folding Of E.coli Maltose-Binding Protein

Ganesh, C. 07 1900 (has links) (PDF)
No description available.
768

Carbon dioxide and carbon dioxide-water mixtures : |b P-V-T properties and fugacities to high pressure and temperature constrained by thermodynamic analysis and phase equilibrium experiments

Mäder, Urs Karl January 1990 (has links)
The thermophysical properties of supercritical CO₂ and H₂O-CO₂ mixtures are reviewed and their computation and prediction improved through theory and experiment. A resolution is attempted among inconsistencies between and within data sets, including P-V-T measurements, phase equilibrium experiments and equations of state. Pure carbon dioxide: Equations of state for CO₂ (Kerrick & Jacobs, 1981; Bottinga & Richet, 1981; Holloway, 1977) are based solely on P-V-T data up to 8 kbar and lead to deviations from phase equilibrium data at pressures greater than 10-20 kbar. Mathematical programming analysis has been applied to the fitting of parameters for an equation of state using simultaneously constraints from phase equilibrium and P-V-T data. Phase equilibrium data up to 42 kbar are used to define a feasible region for the adjustable parameters in free energy space. Each half-bracket places an inequality constraint on the fugacity of CO₂ provided the thermophysical properties of the solid phases are known. Except for magnesite thermophysical data from the mineral data base of Berman (1988) were used. A least squares objective function served to optimize parameters to P-V-T data. The enthalpy of formation of magnesite was revised on the basis of recent low pressure phase equilibrium experiments by Philipp (1988) to —1112.505 kj/mole. Piston-cylinder experiments were performed to constrain the equilibrium magnesite ⇌ periclase + CO₂ at high pressure. The equilibrium boundary is located at 12.1(±1) kbar, 1173-1183 °C (±10), and at 21.5(±1) kbar, 1375-1435 °C (±10). A van der Waals type equation of state with five adjustable parameters has been developed for CO₂. The function is smooth and continous above the critical region, behaves well in the high and low pressure limits, and the calculation of ʃ VdP for free energy does not require numerical integration. Computed free energies are consistent with all phase equilibrium data at high pressure, and computed volumes agree reasonably with P-V-T measurements. The proposed equation is: [ Equation omitted ] with B₁ = 28.0647, B₂ = 1.7287.10⁻⁴, B3 = 83653, A₁ = 1.0948.10⁹, A₂ = 3.3 7 47.10⁹, and R = 83.147, in units of Kelvin, bar and cm³/mole. The equation is recommended up to 50 kbar and above 400 K with reasonable extrapolation capabilities. A FORTRAN source code to evaluate the volume and fugacity is provided. Thermophysical properties for the calcium carbonate polymorphs calcite-I, IV, V, and aragonite were derived that are consistent with phase equilibrium experiments. Data required for further improvement include high pressure phase equilibria involving CO₂, constraints on the thermal expansion of magnesite, and P-V-T data to resolve inconsistencies among existing measurements. Water-carbon dioxide mixtures: The two widely used equations of state for H₂O-CO₂ mixtures are those proposed by Kerrick & Jacobs (1981) and by Holloway (1977)-Flowers (1979). Evaluation of existing equations and data is difficult due to inconsistencies among experimental studies. P-V-T-X data by Franck & Todheide (1959) are inconsistent with data by Greenwood (1973) and Gehrig (1980), and cannot be reconciled with measured phase equilibria in H₂O-CO₂ fluid mixtures. Data by Greenwood and Gehrig are in loose agreement but extend only to 600 bar and do not constrain activities at higher pressures. A procedure is developed for using experimental phase equilibrium constraints to put limits on the fugacities of components of the fluid mixture. Inconsistencies among phase equilibrium studies are discussed. It is concluded that the data base available is not yet adequate to derive a reliable equation of state for H₂O-CO₂ mixtures. Future work must include P-V-T-X measurements to 8 kbar and phase equilibrium studies to resolve inconsistencies. These can constrain deviations from ideal mixing in the fluid phase, and constrain specific volumes at high pressures where P-V-T-X data connot be obtained. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
769

Unsaturated hydro-chemo-mechanical modelling based on modified mixture theory

Chen, Xiaohui January 2010 (has links)
New unsaturated coupled models have been developed for fluid transport in deformable rock by using modified mixture theory rather than a fully mechanics-based approach. These models include the following: an unsaturated hydro-mechanical coupled model for both non-swelling and swelling materials, in which a new coupled formulation for hydration swelling rock has been included; and an unsaturated hydro-mechanical-chemo coupled model, incorporating a new coupled formulation including osmosis flow and an unsaturated version of Darcy's law which has been extended by including osmosis effects.Modified mixture theory is mainly based on non-equilibrium thermodynamics. Helmholtz free energy is used to give the energy relationship between the fluids and solid and, by using the Gibbs-Duhem equation, the interactions between different fluids such as gas, water and chemical can be obtained. In this research, general coupled formulations for both large small and deformations have been obtained. For swelling rocks, the water between the clay platelets can be modeled by including the difference between the free energy of whole domain and that of the pore water plus the solid skeleton. By assuming small deformations, the final equations can be compared with those derived using the mechanics approach.The new coupled models have been tested by carrying out simple benchmark numerical simulations using finite elements. Problems analyzed include: (1) the consolidation of saturated swelling rocks in which the hydration swelling effects on consolidation have been analysed in detail; (2) the desaturation and resaturation of seasonally affected rocks around tunnels; (3) the desaturation stage for swelling rocks used in the containment of nuclear waste disposal; (4) chemical transport in very low permeability rock used for nuclear waste disposal, in which particular attention has been focused on osmosis flow and chemical consolidation. In summary, this thesis extends modified mixture theory and develops new coupled formulations which can be applied to deep nuclear waste disposal, including tunnelling, drilling and chemical transport in low permeability host rock.
770

WEIGHTED RESIDUAL METHODS IN SPACE-DEPENDENT REACTOR DYNAMICS

Fuller, Edward Lewis, 1940-, Fuller, Edward Lewis, 1940- January 1969 (has links)
No description available.

Page generated in 0.094 seconds