Spelling suggestions: "subject:"thermographie infrarouge"" "subject:"thermographies infrarouge""
21 |
Potentiel de la robotique pour l'inspection thermographique par chauffage inductifMokhtari, Mohammed-Yacine 29 May 2024 (has links)
La thermographie par courants de Foucault (ECT) est une méthode de thermographie active. L’excitation inductive génère des courants de Foucault dans les spécimens conducteurs. En présence de défauts, la circulation des courants est affectée par ces discontinuités produisant un changement dans la distribution de la température autour des défauts. Ces changements sont observés avec une caméra infrarouge. Dans ce travail, on présente une application robotique de la thermographie par courants de Foucault. Une interface robotique a été développée et tous les capteurs utilisés ont été intégrés à la plateforme. Des simulations ont été achevées avec COMSOL Multiphysics en variant différents paramètres. Des expériences ont été menées sur plusieurs spécimens (de différents matériaux) avec des défauts de différents types et tailles. La linescan thermographie est principalement étudiée et d’autres modes d’inspections ont été explorés. Les images résultantes sont reconstruites avec un algorithme dédié. Finalement, les résultats de la méthode sont comparés à ceux de la thermographie optique (par halogène) pour montrer les capacités de la méthode. / Eddy current thermography (ECT) is an active thermography method. The inductive excitation generates Eddy currents in electrically-conductive specimen. In a presence of defects, the eddy current flow is affected by these discontinuities leading to changes in the temperature distribution in the specimen around the defects. These changes are observed by an infrared camera. In this work, we present a robotic application of the method. A robotic interface is developed and all the sensors needed are integrated to the platform. Simulations are performed using COMSOL Multiphysics by varying different parameters. Experiments are realised on different specimens (made of different materials) with defects of different sizes. The linescan Eddy current thermography is studied and other modes are explored. The resulting images are reconstructed with a dedicated algorithm. Finally, the method’s results are compared to optical thermography to show the capability of the method.
|
22 |
Stimulation ultrasonore en thermographie infrarouge : intégration des appareillages et développement de procédures expérimentalesPiau, Jean-Marc 12 April 2018 (has links)
Ce mémoire présente l'intégration des appareillages et le développement de procédures expérimentales pour la réalisation d'inspection non destructive effectuée par vibrothermographie stimulée par ultrasons. Le laboratoire de vision et systèmes numériques (LVSN) de l'Université Laval s'est doté, en 2005, de deux sources ultrasonores destinées à l'étude et le développement d'une technique non destructive manquante au laboratoire. Cette technique s'appelle la vibrothermographie stimulée par ultrasons du fait que l'on utilise une caméra infrarouge pour cartographier thermiquement, sans contact, la surface d'un matériau stimulé mécaniquement par ondes mécaniques de fréquences ultrasoniques. Après avoir lu ce mémoire, le lecteur devrait être capable de réaliser une inspection non destructive efficace par vibrothermographie stimulée par ultrasons. Ce dispositif intégré au cours de ma maîtrise est maintenant opérationnel au sein du laboratoire pour des fins d'élargissement des techniques d'inspection non destructive de matériaux.
|
23 |
Comparaison expérimentale de la thermographie modulée et de la thermographie pulsée pour l'évaluation non destructive des matériaux employés en aérospatialBen Larbi, Wael 16 April 2018 (has links)
Ce mémoire a pour but de comparer deux méthodes de contrôle non destructif : la thermographie modulée et la thermographie puisée, l'étude a été faite sur différents échantillons utilisés dans la construction aéronautique et est présentée sous forme de comparaison quantitative et qualitative, avec une explication des avantages et des inconvénients de chaque méthode.
|
24 |
La thermographie infrarouge à détection synchrone appliquée aux matériaux compositesGuibert, Stéphane 12 April 2018 (has links)
Ce document présente; l'intégration de la thermographie modulée au laboratoire de tests non destructifs. Tous les détails de l'équipement choisi, des réglages des logiciels utilisés et développés, et le choix d'un système modulaire; sont inclus. Les expériences portent sur des échantillons à base de matériaux composites. La technique est donc validée; par les résultats. Les résultats sont ensuite comparés avec la thermographie puisée et la simulation par la méthode; des éléments finis. / This document shows the intergration of the Lock-in thermography method for the non-destructif-testing laboratory. All the details of the equipment, software; settings (used and developped) and the choice of the modular system are included. The experiences arc; done on composite; material samples. The method is also validated by results. Those results are then compared with pulsed thermography and the finite element simulation method.
|
25 |
Monitoring thermal variations in carbon capture by bruciteAksenova, Diana 28 September 2024 (has links)
L'augmentation rapide du niveau de concentration de dioxide de carbone dans l'air ambiant à la suite de diverses activités humaines est l'un des principaux défis environnementaux du XXIe siècle. Par conséquent, la résolution des problèmes d'émissions de carbone est l'une des principales tâches de la société moderne. Diverses technologies ont été développées et testées au cours des dernières décennies pour atténuer ce problème. La carbonatation minérale est reconnue comme l'une des technologies les plus sûres permettant de capturer et de stocker en permanence du carbone sous forme de carbonates thermiquement stables. La minéralisation passive du carbone par les résidus miniers en tant que processus naturel a lieu dans des conditions environnementales, partout où l'accès de l'air et de l'eau au tas de résidus miniers est possible. Le présent travail explore l'utilisation de la thermographie infrarouge comme méthode non destructive de surveillance du comportement exothermique au cours de la capture passive du carbone par la brucite. La configuration de carbonatation à deux cellules, consolidée avec une caméra infrarouge, a été conçue pour surveiller simultanément les variations thermiques de la surface du matériel dues à l'absorption de CO2 ainsi que le flux de chaleur échangé entre la brucite et son environnement. Les résultats montrent une influence significative de la température ambiante sur le système qui a contribué à l'échange thermique de la couche réactive avec l'environnement. La comparaison des profils de température entre les demi-cellules de référence et réactives montre des différences dans les variations thermiques par rapport à la température adiabatique à cause de l'influence de la température ambiante. L'élévation de température adiabatique par rapport aux profils de température de surface démontre une différence substantielle dans le taux de génération de chaleur de carbonatation en raison de l'échange de flux de chaleur avec l'environnement pendant le processus. / Rapid increment of the level of carbon concentration in ambient air in consequence of various human activities is one of the major environmental challenges of 21st century. Therefore, solving carbon emissions issues is one of the main tasks of the modern society. Variety of technologies have been developed and tested over the past decades to alleviate this concern. Mineral carbonation is recognized as one of the safest technologies that allows to capture and permanently store carbon in the form of thermally stable carbonates. Passive mineral carbonation by mining residues as a naturally occurring process takes place under environmental conditions anywhere where the air and water access to mining residue heap can be obtained. The present work explores the use of infrared thermography as a non-destructive method of monitoring exothermal behavior of passive carbon capture by brucite. Dual-cell carbonation setup consolidated with an infrared camera was designed in order to provide simultaneous monitoring of thermal variations on the surface of the material due to CO2 uptake as well as exchange of heat fluxes between brucite and its surroundings. The results show a significant influence of room temperature on the system that contributed to heat exchange of the reactive layer with the surrounding. The temperature profiles comparison between reference and reactive half-cells demonstrates striking differences in thermal variations than the adiabatic temperature due to the room temperature influence. Adiabatic temperature rise in comparison with surface temperature profiles demonstrates a substantial difference in carbonation heat generation rate due to heat fluxes exchange with surrounding during the process.
|
26 |
Numerical modeling of pulse thermography experiments for defect characterisation purposesSusa, Mirela 16 April 2018 (has links)
La méthode des éléments finis est un outil mathématique puissant qui permet la résolution des équations différentielles décrivant un processus physique donné. Elle est particulièrement adaptée à la résolution de problèmes non linéaires ayant des géométries complexes. Une de ces applications est la modélisation du transfert de chaleur dans un objet soumis à une inspection par la technique de thermographie infrarouge pulsée (PT). Les résultats de ce travail ont prouvé que les solutions obtenues numériquement correspondent aux résultats expérimentaux, ceci malgré les contraintes liées à la puissance de l'ordinateur utilisé (capacité mémoire, disque, etc.) afin de résoudre le problème d'une manière adéquate. Par conséquent, le modèle numérique peut être considéré comme un outil complémentaire à la caractérisation des défauts par la PT. Dans le cas d'une procédure d'inspection où les différenst types de défauts présents dans le spécimen sont connus a priori, la modélisation numérique peut être utilisée efficacement afin d'améliorer la caractérisation de ces défauts, grâce à la combinaison modélisation MEF / expérience. En se basant sur l'analyse qualitative de l'évolution temporelle des profils de température obtenus en pratique, on a démotnré qu'il est possible de déterminer le type de défaut par une simple comparaison de la forme expérimentale de l'évolution du contraste qui est dépendante du type de défaut, avec les résultats obtenus grâce au modèle numérique. Une fois que le défaut est connu, en cas de structures complexes de type "sandwich", sa profondeur peut être réduite automatiquement puisque la plupart de ces défauts typiques apparaît sur les interfaces des couches de l'échantillon. Afin de procéder à la détermination de la taille du défaut, tâche qui est souvent très difficile en cas de structures multicouches à cause du contraste flou observé sur le défaut, provoqué par les effets latéraux de diffusion de chaleur, les expressions de régression obtenues à partir des résultats de modélisation peuvent être utilisées. Dans ce contexte, comme il a été démontré, la valeur du contraste thermique maximal obtenue expérimentalement n'est pas un paramètre fiable qui peut être utilisée avec confiance comme indicateur quantitatif des caractéristiques du défaut (dans ce cas-ci, sa taille latérale). Ceci est principalement dû au niveau élevé de l'incertitude sur le contraste maximal de température [delta]Tmax déterminé à partir de l'expérience, ainsi qu'à la force dépendance de [delta]Tmax à l'égard de la puissance de la source de chlauer appliquée. Ce problème devient signficatif dans le contexte de chauffage non-uniforme inévitablement présent dans les expériences de thermographie pulsée. En ce qui concerne l'incertitude des mesures, dans les cas où le signal thermique du défaut est faible, l'incertitude peut devenir égale ou même plus grande que la [delta]Tmax obtenu. Cependant, dans la plupart des cas, elle représente un pourcentage significatif du [delta]Tmax déterminé expérimentalement. D'autre part, les effets de l'excitation non-uniforme se sont avérés partiellement éliminés quand la procédure proposée pour la sélection de la région saine adéquate est utilisée. La procédure est basée sur l'utilisation de l'Image de Distribution de Source (IDS) reconstruite à partir de plusieurs thermogrammes initiaux acquis juste après que l'excitation soit appliquée à l'échantillon (alors que les effets possibles des défauts ne sont pas encore visibles sur la surface du spécimen). Une fois appliquée, la méthodologie s'assure que les régions défectueuses et saines aient reçu une quantité égale d'énergie (chaleur) durant l'excitation (jusqu'à une différence tolérable donnée). Cependant, aucune des corrections et mesures de précaution ne peuvent éliminer la nature fortement incertaine des valeurs expérimentales de [delta]Tmax. D'un autre côté, la période T max d'apparition de [delta]Tmax semble être beaucoup moins affectée par dse incertitudes de mesure et est relativement sensible aux caractéristiques du défaut (telles que sa taille et sa profondeur). On a démontré que même s'il existe des différences dans les valeurs absolues, les périodes de contraste maximal de température obtenues expérimentalement et numériquement peuvent être reliées par une simple relation algébrique, qui est réduite à une différence à une constante donnée. Une fois que ce rapport est établi, la régression obtenue par la modélisation peut être utilisée efficacement afin de fournir les informations désirées sur les caractéristiques inconnues du défaut. D'ailleurs, dans plusieurs cas où seulement un nombre limité de défauts est disponible dans l'échantillon calibré, pour que le procédé d'inversion soit établi, ou quand les données de mesure sont trop bruitées pour permettre la formulation d'une méthodologie d'inversion fiable, la modélisation numérique permet la déterminaison plus simple et plus directe des relations de régression pour de futures caractérisations de défauts. Par conséquent, le nombre illimité de simulations peu coûteuses pouvant être effectuées permet la création d'ensemble global et complet de relations entre les caractéristiques de défauts et les variables significatives de la PT, telle que la période d'apparition du contraste maximal de température.
|
27 |
Enhancing concrete infrastructure integrity : integrating active thermography and ground penetrating radar for delamination detectionOmidi, Zahra 05 September 2024 (has links)
Les délaminations sous-surfaciques représentent une menace significative pour l'intégrité structurelle des composants en béton et nécessitent des méthodes de tests non destructives (NDT) efficaces et fiables pour une détection rapide. Cette étude examine l'intégration de la thermographie infrarouge active (IRT) et du radar à pénétration de sol (GPR) pour la détection et l'évaluation de la délamination dans les dalles de béton. Deux spécimens de laboratoire, construits en béton armé et intentionnellement conçus pour simuler une délamination interne, sont soumis à des tests à l'aide de méthodes IRT et GPR. La méthodologie implique l'utilisation d'une approche de thermographie infrarouge par chauffage par étapes, qui nécessite la capture d'images thermographiques brutes tout au long des phases de chauffage et de refroidissement. Ce processus documente les variations thermiques et aide à identifier les modèles de dommages sous-surfaciques. Simultanément, le radar à pénétration de sol (GPR) est intégré dans le processus d'évaluation pour mesurer l'étendue et la gravité de la délamination à l'intérieur des spécimens. Le GPR fournit des informations détaillées sur l'intérieur des spécimens en utilisant des ondes électromagnétiques haute fréquence. Il mesure le temps que mettent les impulsions radar pour traverser les matériaux et refléter à la surface. Ces données, associées aux résultats thermographiques, offrent une compréhension complète des conditions internes des dalles de béton. La conception expérimentale implique deux spécimens de béton identiques en taille mais avec et sans armature pour explorer l'impact des barres d'armature sur les capacités de détection des méthodes IRT et GPR. L'étude inclut des défauts de différentes tailles et profondeurs, permettant une évaluation complète des performances des méthodes dans différentes conditions. La méthode de thermographie active, caractérisée par un rapport taille-profondeur de 0.83, montre une capacité remarquable à détecter presque tous les défauts. Les données thermographiques, acquises pendant le processus de refroidissement, fournissent des informations primordiales sur les signatures thermiques des delaminations. Le GPR se révèle très efficace pour identifier toutes les anomalies sous-surfaciques, même les plus profondes et les plus petites. L'étude souligne les forces complémentaires de l'IRT et du GPR, où l'IRT offre une couverture plus large et le GPR fournit des informations précises sur la profondeur. Les résultats de cette étude fournissent une base solide pour les développements futurs dans la surveillance de la santé structurelle et la maintenance des structures en béton. / Subsurface delaminations pose a significant threat to the structural integrity of concrete components and they require effective and reliable non-destructive testing (NDT) methods for early detection. This study investigates the integration of Active Infrared Thermography (IRT) and Ground Penetrating Radar (GPR) for the detection and evaluation of delamination in concrete slabs. Two laboratory specimens, built from reinforced concrete and intentionally designed to simulate internal delamination, are subjected to testing using IRT and GPR methods. The methodology involves employing a step-heating Infrared Thermography (IRT) approach, which requires capturing raw thermographic images throughout both the heating and cooling phases. This process documents thermal variations and helps identify subsurface damage patterns. Simultaneously, Ground Penetrating Radar (GPR) is integrated into the assessment process to measure the extent and severity of delamination within the specimens. GPR provides detailed subsurface information using high-frequency electromagnetic waves. It measures the time that radar pulses take to travel through materials and reflect back to the surface. This data along with the thermographic findings, offer a comprehensive understanding of the internal conditions of the concrete slabs. The experimental design involves two concrete specimens that are identical in size but with and without reinforcement to explore the impact of rebars on the detection capabilities of the IRT and GPR methods. The study includes defects of different sizes and depths, enabling a comprehensive evaluation of the methods' performance under different conditions. The active thermography method, characterized by a size-to-depth ratio of 0.83, shows a remarkable ability to detect nearly all defects. The thermographic data, acquired during the cooling process, provides valuable insights into the thermal signatures of the defects. The GPR proves highly efficient in identifying all subsurface anomalies, even the deepest and smallest. The study emphasizes the complementary strengths of IRT and GPR, where IRT provides broader coverage, and GPR offers precise depth information. The findings of this study provide a solid foundation for future developments in structural health monitoring and maintenance of concrete structures.
|
28 |
Infrared thermography for concrete infrastructure inspection : capabilities, minimum requirements, and advances in automated diagnosticPozzer, Sandra 13 December 2024 (has links)
Cette recherche explore l'utilisation de la thermographie infrarouge passive (IRT) pour la détection du délaminage dans les infrastructures civiles et l'intégration des données obtenues à partir de l'inspection visuelle et de l'IRT avec des technologies informatiques avancées pour faciliter la détection, l'interprétation et l'évaluation des dommages et augmenter la visualisation, l'accessibilité, l'interopérabilité et la réutilisabilité des résultats de l'inspection. La motivation de cette recherche découle des incertitudes actuelles entourant l'inspection des grandes infrastructures à l'aide de l'IRT passive. Les chercheurs, les entreprises d'inspection et les décideurs exécutifs sur le marché de la durabilité et de la gestion du cycle de vie des infrastructures sont confrontés à des incertitudes théoriques et pratiques dans l'élaboration d'une stratégie globale pour inspecter plusieurs composants des grandes infrastructures en béton, ainsi que dans la gestion des données qui en résultent. Il existe un désir de mieux comprendre l'utilisation de techniques avancées de contrôle non destructif (CND) et d'outils informatiques et d'explorer les avantages de la collaboration entre les industries pour la gestion du cycle de vie des structures civiles. Dans ce contexte, le problème de recherche implique la nécessité d'approches innovantes et normalisées pour améliorer la planification, la collecte, l'analyse, la numérisation et l'interopérabilité des données d'inspection par IRT passive pour les infrastructures civiles. L'objectif principal de la recherche était d'explorer l'utilisation de l'IRT passive comme méthode de détection des délaminages dans divers composants en béton des infrastructures civiles, en tenant compte des différents scénarios d'exposition solaire. De plus, l'étude visait à intégrer les données provenant des inspections par IRT passive avec des technologies informatiques avancées telles que la modélisation par éléments finis (MEF), l'IA et la modélisation des informations du bâtiment (BIM), pour améliorer la planification, le diagnostic, la visualisation, l'interprétation et l'interopérabilité des données d'inspection. Les objectifs spécifiques comprenaient l'évaluation de la faisabilité, de la sensibilité et des exigences minimales pour utiliser l'IRT passive pour détecter les délaminages, l'élaboration d'une procédure de planification d'enquête, l'amélioration des techniques de contraste thermique, l'utilisation de l'IA pour détecter semi-automatiquement les délaminages, et l'intégration des résultats de l'IRT avec BIM. La méthodologie impliquait des domaines de recherche interdisciplinaires et complexes, comprenant l'inspection du béton, la thermographie infrarouge, la simulation numérique, le traitement d'images, la photogrammétrie, l'intelligence artificielle, et la modélisation des informations du bâtiment. En outre, l'étude englobait la révision des normes existantes et des rapports de recherche, la construction d'échantillons de béton représentatifs pour preuve de concept et la validation de l'étude numérique, et plusieurs études de cas comprenant l'acquisition de données sur le terrain avec plusieurs dispositifs (drones, voitures et caméras portatives munies de capteurs visibles et infrarouges). Les campagnes de collecte de données ont commencé en avril 2021 et se sont terminées en juillet 2023, étant menées sur des sites expérimentaux et publics afin d'informer et de soutenir le projet de recherche. Les résultats du travail comprenaient : (i) une évaluation approfondie de l'efficacité de l'IRT pour inspecter les infrastructures en béton, y compris une preuve de concept détaillée et un protocole recommandé pour la collecte de données, (ii) la création d'un modèle numérique non linéaire vérifié et validé pour simuler des inspections par IRT passive, qui peut être utilisé pour déterminer les exigences minimales pour inspecter les délaminages dans les structures en béton extérieures en utilisant l'IRT passive, (iii) le développement d'approches et d'outils de détection de dommages multimodaux semi-automatisés adaptés au traitement de grands ensembles de données générés à partir d'inspections effectuées dans et au-delà du spectre visible, et (iv) le développement d'un modèle d'information numérique et collaboratif contenant des données d'inspection complètes et bien structurées, présentées dans un format standard et ouvert pouvant être partagé avec d'autres inspecteurs, ingénieurs, gestionnaires, chercheurs et utilisateurs à diverses fins. En améliorant la compréhension de l'utilisation potentielle de tests non destructifs avancés, c'est-à-dire l'IRT passive, aux côtés de technologies informatiques et d'information, ce projet fait progresser les pratiques de maintenance des infrastructures. Non seulement ces conclusions peuvent optimiser la durabilité des infrastructures, mais elles peuvent également faciliter l'évolution des pratiques traditionnelles de CND pour répondre aux exigences de l'Industrie 4.0, notamment la durabilité, la numérisation, l'interopérabilité et la transparence de l'information. / This research work explores the use of passive infrared thermography (IRT) for the detection of delamination in civil infrastructures. It aims to facilitate the detection, interpretation, and evaluation of damages and integrate the data obtained from visual and IRT inspection with advanced computational technologies to increase visualization, accessibility, interoperability, and reusability of the inspection results. The motivation for this research arises from the current uncertainties surrounding the inspection of large infrastructures using passive IRT. Researchers, inspection companies, and stakeholders in the infrastructure durability and life cycle management sector are faced with both theoretical and practical uncertainties in developing a comprehensive strategy for inspecting multiple components of large concrete infrastructures using passive IRT, as well as managing the resulting inspection data. There is a demand to better understand the use of advanced non-destructive testing (NDT) techniques and computational tools and explore the benefits of collaboration between industries for the life-cycle management of civil structures. In this context, the research problem entails the need for innovative and standardized approaches to enhance the planning, collection, analysis, digitalization, and interoperability of passive IRT inspection data for civil infrastructures. The main objective of the research was to explore the utilization of passive IRT as a method of detecting delamination in various concrete components of civil infrastructures, while accounting for different scenarios of solar exposure. Additionally, the study aimed to integrate data from passive IRT inspections with advanced computational technologies such as numerical simulation, artificial intelligence (AI), and Building Information Modeling (BIM), to improve planning, diagnosis, visualization, interpretation, and interoperability for inspection data. Specific objectives included assessing the feasibility, sensibility, and minimum requirements for utilizing passive IRT to detect delamination, devising a survey planning procedure, enhancing thermal contrast techniques, leveraging AI for semi-automated delamination detection, and integrating IRT planning and results with BIM. The methodology involved interdisciplinary and complex research domains, including concrete inspection, infrared thermography, numerical simulation, image processing, photogrammetry, artificial intelligence, and information modeling. Moreover, the study encompassed the review of existing standards and research works, the construction of concrete samples for proof of concept and validation of numerical studies, and the conduction of multiple case studies involving field data acquisition using various devices such as drones, vehicles, and handheld cameras equipped with visible and infrared sensors. The data collection campaigns started in April 2021 and were concluded in July 2023, being conducted at experimental and public sites to inform and support the research project. The findings of the work included: (i) a thorough evaluation of the capabilities of IRT for inspecting concrete infrastructure, including a detailed proof of concept and a recommended protocol for data collection, (ii) the creation of a verified and validated non-linear numerical model for simulating passive IRT inspections, which can be used to determine the minimum requirements for inspecting delamination in outdoor concrete structures using passive IRT, (iii) the development of semi-automated multimodal damage detection approaches and tools suitable for processing large datasets generated from passive IRT inspections of delamination in concrete structure, and (iv) the development of a digital and collaborative information model that contains comprehensive and well-structured inspection data, presented in a standard and open format that can be shared with other inspectors, engineers, managers, researchers, and users for various purposes. By enhancing the understanding of the potential use of advanced non-destructive testing, i.e., passive IRT, alongside computational and information technology, this project advances infrastructure maintenance practices. Not only can its findings optimize infrastructure durability, but they can also facilitate the evolution of traditional NDT practices to meet the demands of Industry 4.0, including sustainability, digitalization, interoperability, and information transparency.
|
29 |
Calcul précis des déformations planes par la méthode de la grille. Application à l'étude d'un multicristal d'aluminiumBadulescu, Claudiu 08 January 2010 (has links) (PDF)
Ce travail porte sur l'amélioration de la méthode de la grille afin de mesurer avec de meilleures performances métrologiques des champs de déformation en surface d'éprouvettes soumises à des sollicitations mécaniques. Une procédure d'obtention directe des déformations à partir d'images de grilles a été proposée dans ce but. L'influence des défauts de la grille a également été caractérisée et une procédure adaptée a été développée pour l'éliminer. Les outils proposés ont été appliqués dans le cas de grilles unidirectionnelles et croisées. Les performances métrologiques ont été estimées avec des essais adaptés. Enfin, la méthode a été appliquée à un essai sur un multicristal d'aluminium, montrant ainsi sa mise en oeuvre dans un cas complexe de caractérisation de comportement de matériau
|
30 |
Analyse par thermographie infrarouge des effets dissipatifs de la localisation dans des aciersLouche, Hervé 19 January 1999 (has links) (PDF)
La compréhension et la modélisation des mécanismes de localisation observés lors de processus d'emboutissage représentent un enjeu industriel important. L'objectif de ce travail est d'étudier, par une approche expérimentale basée sur l'analyse des sources de chaleur, les manifestations de localisation pouvant se produire, sur des aciers, lors d'essais quasi-statiques de traction monotone.<br />A partir d'un traitement d'images thermiques infrarouge (effets) et de l'équation de diffusion de la chaleur, on propose une méthode permettant d'estimer les sources de chaleur (causes) générées par le processus de déformation.<br />Sur certains aciers doux, on met en évidence la propagation à vitesse uniforme d'une ou plusieurs bandes dissipatives étroites à travers la zone utile de l'éprouvette. Comparativement à ce premier mode (bandes de Lüders) où les effets dissipatifs sont soudains, intenses et très localisés, on met en évidence le caractère plus régulier et progressif de la concentration des zones où se développent les irréversibilités mécaniques menant à la striction localisée. Des "indicateurs de localisation énergétiques'' proposés pour détecter la localisation montrent qu'elle peut apparaître avant le maximum de la charge, dans plusieurs zones de l'éprouvette. Ce constat implique que la partie utile d'une éprouvette doit être considérée comme une structure et non comme un élément de volume réagissant de façon homogène, ce qui n'est pas sans conséquences sur les méthodes d'identification des modèles de comportement utilisés, en particulier, dans les approches théoriques de la localisation.<br />Enfin, d'autres expériences ont permis de mettre en évidence des manifestations énergétiques associées à des formes particulières de localisation : propagation de fronts de changement de phase (acier inoxydable A301), effets dissipatifs associés à des bandes de glissement (acier magnétique HiBiGO), effets dissipatifs localisés dans des bandes de cisaillement (polymère PVC).
|
Page generated in 0.0827 seconds