• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 14
  • 10
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 21
  • 17
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Soy-Polypropylene Biocomposites for Automotive Applications

Guettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product. The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods. Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford. The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler. The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently. The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength. The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour. The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler. In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
72

Soy-Polypropylene Biocomposites for Automotive Applications

Guettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product. The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods. Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford. The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler. The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently. The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength. The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour. The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler. In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
73

Evaluation of the Carbonization of Thermo-Stabilized Lignin Fibers into Carbon Fibers

Kleinhans, Henrik January 2015 (has links)
Thermo-stabilized lignin fibers from pH-fractionated softwood kraft lignin were carbonized to various temperatures during thermomechanical analysis (TMA) under static and increasing load and different rates of heating. The aim was to optimize the carbonization process to obtain suitable carbon fiber material with good mechanical strength potential (high tensile strength and high E-modulus). The carbon fibers were therefore mainly evaluated of mechanical strength in Dia-Stron uniaxial tensile testing. In addition, chemical composition, in terms of functional groups, and elemental (atomic) composition was studied in Fourier transform infrared spectroscopy (FTIR) and in energy-dispersive X-ray spectroscopy (EDS), respectively. The structure of carbon fibers was imaged in scanning electron microscope (SEM) and light microscopy. Thermogravimetrical analysis was performed on thermo-stabilized lignin fibers to evaluate the loss of mass and to calculate the stress-changes and diameter-changes that occur during carbonization. The TMA-analysis of the deformation showed, for thermo-stabilized lignin fibers, a characteristic behavior of contraction during carbonization. Carbonization temperatures above 1000°C seemed most efficient in terms of E-modulus and tensile strength whereas rate of heating did not matter considerably. The E-modulus for the fibers was improved significantly by slowly increasing the load during the carbonization. The tensile strength remained however unchanged. The FTIR-analysis indicated that many functional groups, mainly oxygen containing, dissociate from the lignin polymers during carbonization. The EDS supported this by showing that the oxygen content decreased. Accordingly, the relative carbon content increased passively to around 90% at 1000°C. Aromatic structures in the carbon fibers are thought to contribute to the mechanical strength and are likely formed during the carbonization. However, the FTIR result showed no evident signs that aromatic structures had been formed, possible due to some difficulties with the KBr-method. In the SEM and light microscopy imaging one could observe that porous formations on the surface of the fibers increased as the temperature increased in the carbonization. These formations may have affected the mechanical strength of the carbon fibers, mainly tensile strength. The carbonization process was optimized in the sense that any heating rate can be used. No restriction in production speed exists. The carbonization should be run to at least 1000°C to achieve maximum mechanical strength, both in E-modulus and tensile strength. To improve the E-modulus further, a slowly increasing load can be applied to the lignin fibers during carbonization. The earlier the force is applied, to counteract the lignin fiber contraction that occurs (namely around 300°C), the better. However, in terms of mechanical performance, the lignin carbon fibers are still far from practical use in the industry.
74

高温・加圧型熱重量分析装置の開発研究

松田, 仁樹, 板谷, 義紀, 渡辺, 藤雄, 武田, 詔平, 前田, 幸雄 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(A)(1) 課題番号:07555545 研究代表者:松田 仁樹 研究期間:1995-1996年度
75

Synthèse du LiXFePO4 par voie fondue et l’étude de la couche de carbone sur LiFePO4

Dahéron, Benjamin 03 1900 (has links)
Le LiFePO4 est un matériau prometteur pour les cathodes des batteries au lithium. Il possède une bonne stabilité à haute température et les précurseurs utilisés pour la synthèse sont peu couteux. Malheureusement, sa faible conductivité nuit aux performances électrochimiques. Le fait de diminuer la taille des particules ou d’enrober les particules d’une couche de carbone permet d’augmenter la conductivité. Nous avons utilisé une nouvelle méthode appelée « synthèse par voie fondue » pour synthétiser le LiFePO4. Cette synthèse donne des gros cristaux et aucune impureté n’est détectée par analyse Rayon-X. En revanche, la synthèse de LiXFePO4 donne un mélange de LiFePO4 pur et d’impureté à base de lithium ou de fer selon l’excès de fer ou de lithium utilisé. La taille des particules de LiFePO4 est réduite à l’aide d’un broyeur planétaire et plusieurs paramètres de broyage sont étudiés. Une couche de carbone est ensuite déposée sur la surface des particules broyées par un traitement thermique sur le LiFePO4 avec du -lactose. L’influence de plusieurs paramètres comme la température du traitement thermique ou la durée du chauffage sont étudiés. Ces expériences sont réalisées avec un appareil d’analyse thermogravimétrique (ATG) qui donne la quantité de chaleur ainsi que la variation de masse durant le chauffage de l’échantillon. Ce nouveau chauffage pour la couche de carbone donne des échantillons dont les performances électrochimiques sont similaires à celles obtenues précédemment avec la méthode de chauffage pour la couche de carbone utilisant le four tubulaire. / LiFePO4 is a promising cathode material for Lithium-ion batteries. It provides high thermal stability and is synthesized using low cost materials. Unfortunately LiFePO4 suffers from a low electrical conductivity, which is harmful to its electrochemical performance. Decreasing the particle size or coating the particles with carbon increases the conductivity of the material. We have used a new synthetic method called molten synthesis to synthesize LiFePO4. The molten synthesis produces large crystals of LiFePO4 with no impurity detected via X-ray diffraction analysis. Moreover, the synthesis of LiXFePO4 gives a mixture of pure LiFePO4 and Li-based impurities or LiFePO4 and Fe-based impurities whenever there is an excess of lithium or iron used. The particle size of the synthesized material is reduced via a Planetary Mill and numerous milling parameters were investigated. A carbon coating was then deposited on the surface of the milled material by thermally treating LiFePO4 with β-lactose. The influences of several parameters such as heat treatment temperature and/or heating duration were studied. These experiments were performed using a thermogravimetric analysis (TGA), which provides the amount of heat and weight change during the heating of the sample. This new heating method for carbon coating gave rise to samples with similar electrochemical performance data as to the previously established heating method involving a tubular furnace.
76

Synthesis and characterisation of metal (Fe, Ga, Y) doped alumina and gallium oxide nanostructures

Zhao, Yanyan January 2008 (has links)
It is well known that nanostructures possess unique electronic, optical, magnetic, ferroelectric and piezoelectric properties that are often superior to traditional bulk materials. In particular, one dimensional (1D) nanostructured inorganic materials including nanofibres, nanotubes and nanobelts have attracted considerable attention due to their distinctive geometries, novel physical and chemical properties, combined effects and their applications to numerous areas. Metal ion doping is a promising technique which can be utilized to control the properties of materials by intentionally introducing impurities or defects into a material. γ-Alumina (Al2O3), is one of the most important oxides due to its high surface area, mesoporous properties, chemical and thermal properties and its broad applications in adsorbents, composite materials, ceramics, catalysts and catalyst supports. γ-Alumina has been studied intensively over a long period of time. Recently, considerable work has been carried out on the synthesis of 1D γ-alumina nanostructures under various hydrothermal conditions; however, research on the doping of alumina nanostructures has not been forthcoming. Boehmite (γ-AlOOH) is a crucial precursor for the preparation of γ-Alumina and the morphology and size of the resultant alumina can be manipulated by controlling the growth of AlOOH. Gallium (Ga) is in the same group in the periodic table as aluminum. β-Gallium (III) oxide (β-Ga2O3), a wide band gap semiconductor, has long been known to exhibit conduction, luminescence and catalytic properties. Numerous techniques have been employed on the synthesis of gallium oxide in the early research. However, these techniques are plagued by inevitable problems. It is of great interest to explore the synthesis of gallium oxide via a low temperature hydrothermal route, which is economically efficient and environmentally friendly. The overall objectives of this study were: 1) the investigation of the effect of dopants on the morphology, size and properties of metal ion doped 1D alumina nanostructures by introducing dopant to the AlOOH structure; 2) the investigation of impacts of hydrothermal conditions and surfactants on the crystal growth of gallium oxide nanostructures. To achieve the above objectives, trivalent metal elements such as iron, gallium and yttrium were employed as dopants in the study of doped alumina nanostructures. In addition, the effect of various parameters that may affect the growth of gallium oxide crystals including temperature, pH, and the experimental procedure as well as different types of surfactants were systematically investigated. The main contributions of this study are: 1) the systematic and in-depth investigation of the crystal growth and the morphology control of iron, gallium and yttrium doped boehmite (AlOOH) under varying hydrothermal conditions, as a result, a new soft-chemistry synthesis route for the preparation of one dimensional alumina/boehmite nanofibres and nanotubes was invented; 2) systematic investigation of the crystal growth and morphology and size changes of gallium oxide hydroxide (GaOOH) under varying hydrothermal conditions with and without surfactant at low temperature; We invented a green hydrothermal route for the preparation of α-GaOOH or β-GaOOH micro- to nano-scaled particles; invented a simple hydrothermal route for the direct preparation of γ-Ga2O3 from aqueous media at low temperature without any calcination. The study provided detailed synthesis routes as well as quantitative property data of final products which are necessary for their potential industrial applications in the future. The following are the main areas and findings presented in the study: • Fe doped boehmite nanostructures This work was undertaken at 120ºC using PEO surfactant through a hydrothermal synthesis route by adding fresh iron doped aluminium hydrate at regular intervals of 2 days. The effect of dopant iron, iron percentage and experimental procedure on the morphology and size of boehmite were systematically studied. Iron doped boehmite nanofibres were formed in all samples with iron contents no more than 10%. Nanosheets and nanotubes together with an iron rich phase were formed in 20% iron doped boehmite sample. A change in synthesis procedure resulted in the formation of hematite large crystals. The resultant nanomaterials were characterized by a combination of XRD, TEM, EDX, SAED and N2 adsorption analysis. • Growth of pure boehmite nanofibres/nanotubes The growth of pure boehmite nanofibres/nanotubes under different hydrothermal conditions at 100ºC with and without PEO surfactant was systematically studied to provide further information for the following studies of the growth of Ga and Y doped boehmite. Results showed that adding fresh aluminium hydrate precipitate in a regular interval resulted in the formation of a mixture of long and short 1D boehmite nanostructures rather than the formation of relatively longer nanofibres/nanotubes. The detailed discussion and mechanism on the growth of boehmite nanostructure were presented. The resultant boehmite samples were also characterized by N2 adsorption to provide further information on the surface properties to support the proposed mechanism. • Ga doped boehmite nanostructures Based on this study on the growth of pure boehmite nanofibre/nanotubes, gallium doped boehmite nanotubes were prepared via hydrothermal treatment at 100ºC in the presence of PEO surfactant without adding any fresh aluminium hydrate precipitate during the hydrothermal treatment. The effect of dopant gallium, gallium percentage, temperature and experimental procedure on the morphology and size of boehmite was systematically studied. Various morphologies of boehmite nanostructures were formed with the increase in the doping gallium content and the change in synthesis procedure. The resultant gallium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • Y doped boehmite nanostructures Following the same synthesis route as that for gallium doped boehmite, yttrium doped boehmite nanostructures were prepared at 100ºC in the presence of PEO surfactant. From the study on iron and gallium doped boehmite nanostructures, it was noted both iron and gallium cannot grow with boehmite nanostructure if iron nitrate and gallium nitrate were not mixed with aluminium nitrate before dissolving in water, in particular, gallium and aluminium are 100% miscible. Therefore, it’s not necessary to study the mixing procedure or synthesis route on the formation of yttrium doped boehmite nanostructures in this work. The effect of dopant yttrium, yttrium percentage, temperature and surfactant on the morphology and size of boehmite were systematically studied. Nanofibres were formed in all samples with varying doped Y% treated at 100ºC; large Y(OH)3 crystals were also formed at high doping Y percentage. Treatment at elevated temperatures resulted in remarkable changes in size and morphology for samples with the same doping Y content. The resultant yttrium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • The synthesis of Gallium oxide hydroxide and gallium oxide with surfactant In this study, the growth of gallium oxide hydroxide under various hydrothermal conditions in the presence of different types of surfactants was systematically studied. Nano- to micro-sized gallium oxide hydroxide was prepared. The effect of surfactant and synthesis procedure on the morphology of the resultant gallium oxide hydroxide was studied. β-gallium oxide nanorods were derived from gallium oxide hydroxide by calcination at 900ºC and the initial morphology was retained. γ-gallium oxide nanotubes up to 65 nm in length, with internal and external diameters of around 0.8 and 3.0 nm, were synthesized directly in solution with and without surfactant. The resultant nano- to micro-sized structures were characterized by XRD, TEM, SAED, EDX and N2 adsorption. • The synthesis of gallium oxide hydroxide without surfactant The aim of this study is to explore a green synthesis route for the preparation of gallium oxide hydroxide or gallium oxide via hydrothermal treatment at low temperature. Micro to nano sized GaOOH nanorods and particles were prepared under varying hydrothermal conditions without any surfactant. The resultant GaOOH nanomaterials were characterized by XRD, TEM, SAED, EDX, TG and FT-IR. The growth mechanism of GaOOH crystals was proposed.
77

Contribution to the study of formation mechanisms of condensable by-products from torrefaction of various biomasses / Contribution à l’étude de mécanismes de formation des espèces condensables lors de la torréfaction de biomasses variées

Rodriguez Alonso, Elvira 03 December 2015 (has links)
L’objectif des travaux est de mieux comprendre durant la torréfaction de différentes biomasses l’évolution chimique à la fois des phases solide et gaz. Des expériences de torréfaction ont été menées selon un profil de température dynamique entre 200 et 300°C, sous atmosphère inerte, sur du pin, du frêne, du miscanthus et de la paille de blé. La perte de masse et la formation des espèces condensables ont été analysées par ATG-GCMS, et l’évolution chimique de la phase solide par RMN du solide 13C CP/MAS. Trente espèces condensables ont été détectées ; la moitié a été formée dans l’ensemble de la gamme de température explorée et un tiers l’a été par toutes les biomasses. Les principaux phénomènes qui semblent associés à la dégradation du solide sont la décristallisation de la cellulose, une sévère dégradation de l’hémicellulose, la dévolatilisation des groupes acétyles, la conservation des groupes méthoxys et la formation d’un résidu solide. Il a été par ailleurs montré que perte de masse et évolution chimique du solide n’étaient pas directement corrélées pour différentes biomasses. A partir de ces résultats expérimentaux, un modèle conceptuel a été développé pour décrire la dégradation de la biomasse. Trente réactions ont été associées aux trois constituants macromoléculaires principaux que sont la cellulose, l’hémicellulose et la lignine, respectivement représentées par deux sucres en C5 et C6 et par trois unités detype H, G et S. Ce modèle présente l’originalité de s’appuyer sur une description détaillée de ces deux derniers constituants et de prévoir la formation de seize espèces condensables, cinq gaz permanents et six formes de char solide, grâce à des réactions ayant un sens chimique et équilibrées d’un point de vue stoechiométrique. / The objective of the present work is to better understand chemical evolution of both solid and gaseous phases during torrefaction of various biomasses. Torrefaction experiments were carried out with a dynamic profile of temperatures between 200 and 300°C, under inert atmosphere, for pine, ash-wood, miscanthus and wheat straw. Mass loss and formation of condensable species were analyzed by TGA-GC-MS, and chemical evolution of solid phase was characterized by 13C CP/MAS solid-state NMR. Thirty condensable species could be detected; a half of these species were formed during the whole temperature range, and a third were formed by all biomass types. The main phenomena that occurred in solid phase were found to be decrystallization of cellulose, severe degradation of hemicellulose, devolatilization of acetyl groups, conservation of methoxyl groups and charring. It was also found that mass loss and chemical evolution of solid were not directly correlated for different biomasses. Based on the experimental results, a conceptual model was developed to describe biomass degradation duringtorrefaction. Thirty reactions were determined for the three major macromolecular constituents, namely cellulose, hemicellulose – represented by C5 and C6 sugars – and lignin – represented by H, G and S units. The main innovations of this model are in thedetailed approach of hemicellulose and lignin compositions, as well as in the prediction of sixteen condensable and five permanent species, and six forms of solid char, through chemically meaningful and stoichiometrically valid reactions.
78

Síntese e caracterização de fósforos a base de silicatos de cálcio e magnésio dopados com európio e disprósio / Synthesis and characterization of phosphors based on calcium and magnesium silicates doped with europium and dysprosium

MISSO, AGATHA M. 25 May 2017 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2017-05-25T17:33:34Z No. of bitstreams: 0 / Made available in DSpace on 2017-05-25T17:33:34Z (GMT). No. of bitstreams: 0 / Fósforos a base de silicatos de Ca e Mg foram preparados pelo método sol-gel combinado com o processo de sais fundidos. O gel de sílica foi obtido a partir da solução de Na2SiO3 usando soluções de cloretos de európio, disprósio, cálcio e magnésio. Assim, estes cloretos foram homogeneamente distribuídos no gel. O gel obtido foi seco e tratado termicamente a 900°C por 1h para permitir a fusão dos sais presentes. Em seguida o material foi lavado com água até teste negativo para íons Cl- e seco em estufa a 80°C. A redução do európio para Eu2+ foi realizada em um forno sob atmosfera de 5% de H2 e 95% de Ar a 900°C por 3h para obter os fósforos de CaMgSi2O6:Eu2+ e CaMgSi2O6:Eu2+:Dy3+. Nos difratogramas de DRX das amostras, a diopsita foi identificada como fase cristalina principal e quartzo, como a secundária. Micrografias obtidas por MEV (microscopia eletrônica de varredura), das amostras, mostraram morfologia acicular, esférica, folhas e bastonetes das partículas e dos aglomerados . Curva de análise térmica (TGA-DTGA) revelou que a temperatura de cristalização do CaMgSi2O6:Eu2+ é próxima de 765°C. Estudos de espectroscopia de fotoluminescência foram baseados nas transições interconfiguracionais 4fN → 4fN-1 5d do íon Eu2+. O espectro de excitação apresentou banda larga relativa à transição de transferência de carga ligante metal (LMCT) O2- (2p) → Eu3+ na região de 250 nm e bandas finas oriundas das transições 4f → 4f do íon Eu3+ , mostrando a transição 7F0 → 5L6 em 393 nm quando a emissão é monitorada em 583,5 nm. E o espectro de emissão com excitação monitorada em 393 nm apresentou picos finos entre 570 e 750 nm característicos das transições 5D0 → 7 FJ (J = 0 - 5) do íon Eu3+ , indicando que o íon Eu3+ se encontra em um sítio com centro de inversão. Os resultados obtidos indicam que o método desenvolvido é viável na síntese de fóforos, CaMgSi2O6:Eu2+ e CaMgSi2O6:Eu2+:Dy3+ como foi proposto. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
79

Magnétisme coopératif dans des composés de coordination à base de Cu(II), Ni(II) et Co(II) et ligands imidazole carboxyliques / Cooperative magnetism in coordination compounds based on Cu(II), Ni(II) and Co(II) and imidazole carboxylic ligands / Magnetismo cooperativo en compuestos de coordinación basados en Cu(II), Ni(II) y Co(II) con ligandos imidazol carboxílicos

Arrué-Muñoz, Ramón 09 December 2014 (has links)
La présente thèse traite de la synthèse à température ambiante et pression atmosphérique de différents composés de coordination hybrides organique-inorganiques. La partie inorganique de ces composés est constituée d’éléments de transition de la première période 3dn divalents: cobalt, nickel et cuivre. Les ligands utilisés constituent la partie organique de ces composés. Les ligands employés sont l’acide-1H-imidazol-4-carboxilique (H2IMC) et l’acide-1H-imidazol-4,5-dicarboxílique (H3IMDC). La composante inorganique Mx+ est introduite dans le composé terminal en utilisant le précurseur métallique moléculaire M(hfac)2 (M = Cu2+, Co2+, Ni2+; hfac = 1,1,1,5,5,5- hexafluoro-2,4-pentanodione), précurseur utilisé afin d'obtenir un centre métallique acide facile à coordonner aux ligands imidazol carboxíliques dans des positions axiales. L’ensemble des composés a été caractérisé par l’étude des propriétés magnétiques, études thermogravimétriques et caractérisation structurale (résolution et affinement) sur échantillons pulvérulents. Dans la totalité des structures obtenues, le ligand imidazol carboxylique se lie à l’espèce métallique en positions équatoriales via l’élément azote du cycle et un élément oxygène du groupement carboxylique. Les mesures magnétiques montrent des déviations à la loi de Curie à basse température qui indiquent des phénomènes de coopération magnétique entre les centres métalliques. Ces centres métalliques ont été traités et modélisés en considérant, pour les composés contenant les éléments cuivre et nickel, un modèle de chaîne régulière qui a permis d’estimer la constante d’interéchange J. Pour les composés contenant l’élément cobalt, seule l’importante contribution orbitale (L≠ 0) à la propriété magnétique (état fontamental 4T1g en symétrie octaédrique) sans interaction inter espèces magnétiques a été prise en considération pour traiter les données. / This thesis work presents the synthesis at ambient temperature and pressure of different hybrids organic - inorganic coordination compounds. The inorganic portion is composed by transition elements from the first period 3dn divalent cobalt, nickel and copper. The selected ligands are the organic portion of these compounds, and there are the 1H-imidazol-4-carboxylic acid (H2IMC) and 1H-imidazole-4,5-dicarboxylic acid (H3IMDC)2. The inorganic component Mx+ is introduced into the terminal compound by using the molecular metallic precursor M(hfac)2 (M=Cu2+, Co2+, Ni2+; hfac=1,1,1,5,5,5-hexafluoro-2,4-pentanodione) used to obtain an acidic metal center that coordinates easily to imidazol carboxylic ligands in axial positions. All compounds were characterized by studying their magnetic properties, thermogravimetric analysis and structural characterization (resolution and refinement) on powdered samples. In all these compounds, the imidazole carboxylic ligand is linked to the central metal ion in equatorial position, by the nitrogen atom from the imidazole ring, and an oxygen atom from the carboxylic group. The magnetic measurements have revealed deviations at low temperatures to the Curie law, suggesting magnetic cooperation phenomena between the metallic centers. For the copper and nickel based compounds, the magnetic data was analyzed considering a regular chain model that has led to obtain the value of the exchange coupling constant J. For the cobalt based compounds the treatment has been different. Only the important orbital contribution (L≠ 0) to the magnetic propierties (fundamental state 4T1g for octahedral symmetry) without interaction between the metallic centers was taken into account for the data treatment. / La presente tesis trata de la síntesis a temperatura ambiente y presión atmosférica de diferentes compuestos de coordinación híbridos órgano-inorgánicos. La parte inorgánica de estos compuestos está constituida por los elementos de transición divalentes del primer período 3dn: cobalto, níquel y cobre. Los ligandos utilizados constituyen la parte orgánica de estos compuestos. Los ligandos empleados son el ácido-1H-imidazol-4-carboxílico (H2IMC) y el ácido-1H-imidazol-4,5-dicarboxílico (H3IMDC). La componente inorgánica Mx+ ha sido introducida en los compuestos terminales utilizando el precursor metálico molecular M(hfac)2 (M = Cu2+, Co2+, Ni2+; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanodiona), precursor utilizado con el fin de obtener un centro metálico ácido fácil de ser coordinado por los ligandos imidazol carboxílicos en las posiciones axiales. El conjunto de los compuestos obtenidos ha sido caracterizado mediante el estudio de sus propiedades magnéticas, análisis termogravimétrico y caracterización estructural (resolución y afinamiento) sobre muestras pulverizadas. En la totalidad de la estructuras obtenidas, el ligando imidazol carboxílico se une al metal en posiciones ecuatoriales a través del átomo de nitrógeno del anillo imidazol y un átomo de oxígeno del grupo carboxílico. Las medidas magnéticas muestran desviaciones de la ley de Curie a baja temperatura que indican fenómenos de cooperación magnética entre los centros metálicos. Estos centros metálicos han sido tratados y modelados considerando para los compuestos de cobre y níquel, un modelo de cadena regular que ha permitido estimar el valor de la constante de intercambio J. Para los compuestos de cobalto, se ha considerado la importante contribución orbital (L≠ 0) a la propiedad magnética (estado fundamental 4T1g en simetría octaédrica) sin interacción entre las especies magnéticas para el tratamiento de los datos.
80

Vliv aplikace lignitu na distribuci organického uhlíku v půdě / Influence of the Application of Lignite on the Distribution of Organic Carbon in Soil

Širůček, David January 2019 (has links)
This diploma thesis is focused on optimization of sequential chemical fractionation method to humeomics in order to be useful for determination of organic matter content and distribution and also organic elements in soil. Subsequently, the optimized method is used to assess the efect of lignite application as soil support on these soil characteristics. For these purposes, there were three source matrices of organic matter (lignite, soil and annual soil extraction after lignite application) fractionated by sequential chemical analysis. In parallel, these samples were also fractionated by classic alkaline extraction to obtain the so-called extractable fraction of organic matter (NOM). Individual fractions from sequential chemical fractionation as well as NOM samples were characterized by methods of elemental analysis (determination of organic elements), thermogravimetry (contents of ash, organic matter and moisture) and FTIR spektrometry (structural analysis). The results obtained from a large range of data from all humeomics fractions and NOM fractions showed that the method of sequential chemical fractionation gives higher yields of organic matter compared to classic alkaline extraction. Another indisputable advantage is the fact that the obtained fractions divided according to solubility and strenght of binding to soil inorganics can be better characterized by physical-chemical methods, which provides more detailed information about soil organic matter. The results of the work also show that in order for lignite as a support substance to significantly affect soil properties, a longer time, multiple sampling and repetition of individual fractionations would be needed.

Page generated in 0.1022 seconds