Spelling suggestions: "subject:"thermoluminescence."" "subject:"hermoluminescence.""
161 |
Caracterização dosimétrica de amostras de BeO em feixes de radiação alfa, beta e X por técnicas luminescentes / Dosimetric characterization of BeO samples in alpha, beta and X radiation beams using luminescent techniquesGroppo, Daniela Piai 29 October 2013 (has links)
No campo da medicina, a radiação ionizante é utilizada tanto para fins terapêuticos como para fins diagnósticos, englobando assim um amplo intervalo de doses de diferentes tipos de radiações. Para assegurar que a finalidade da prática esteja sendo alcançada, são necessários estudos detalhados de detectores e dispositivos que respondam a diferentes tipos de radiações. Neste trabalho foi realizada a caracterização dosimétrica de amostras de BeO utilizando as técnicas de termoluminescência (TL) e luminescência opticamente estimulada (OSL) comparando-se as respostas para as radiações alfa, beta e X e propondose um sistema adequado para sua utilização em monitoração de feixes destas radiações. Dentre os principais resultados obtidos estão: alta sensibilidade à radiação beta para ambas as técnicas empregadas, boa reprodutibilidade das respostas TL e OSL (coeficientes de variação inferiores a 5%), uma dependência energética máxima da radiação X de 28% para técnica TL, e de apenas 7% para a técnica OSL, dentro dos intervalos de energia estudados. As características dosimétricas obtidas neste trabalho mostram a possibilidade de aplicação das amostras de BeO em dosimetria das radiações ionizantes X, alfa e beta, considerando os intervalos de dose empregados, pelas técnicas de TL e OSL. Pelos resultados obtidos, as amostras de BeO apresentaram sua utilização potencial para dosimetria de feixes de radiodiagnóstico e radioterapia. / In the medical field, the ionizing radiation is used both for therapeutic and diagnostic purposes, in a wide range of radiation doses. In order to ensure that the objective is achieved in practice, detailed studies of detectors and devices in different types of radiations beams are necessary. In this work a dosimetric characterization of BeO samples was performed using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL) by a comparision of their response for alpha, beta and X radiations and the establishment of an appropriated system for use in monitoring of these radiations beams. The main results are: the high sensitivity to beta radiation for both techniques, good reproducibility of TL and OSL response (coefficients of variation lower than 5%), maximum energy dependence of the X radiation of 28% for the TL technique, and only 7% for the OSL technique, whithin the studied energy range. The dosimetric characteristics obtained in this work show the possibility of applying BeO samples to dosimetry of alpha, beta and X radiations, considering the studied dose ranges, using the TL and OSL techniques. From the results obtained, the samples of BeO showed their potential use for beam dosimetry in diagnostic radiology and radiotherapy.
|
162 |
Implementação de uma análise computadorizada da curva de emissão termoluminescente e aplicação em dosimetria clínica / Implementation of a computerized glow curve analysis and application in clinical dosimetryFerreira, Marcela Felix Chaves 28 February 2018 (has links)
Nas décadas de 1960 e 1970, as primeiras investigações de dosímetros termoluminescentes (TLD), especificamente, os picos dosimétricos, rapidamente revelaram um número surpreendente de fenômenos que poderiam estar diretamente relacionados à densidade de ionização. Um pouco mais tarde, nos anos 80 e no início dos anos 90, a radiação aparentemente desconectada induziu fenômenos que foram descobertos em outros sistemas baseados em fluoreto de lítio (LiF). A última década, no entanto, testemunhou o surgimento de vários modelos, encabeçado através de uma compreensão mais profunda dos mecanismos TL subjacentes, bem como na modelagem micro dosimétrica e especificamente desenvolvida para explicar fenômenos de densidade de ionização. Muitas aplicações em radioterapia fornecem níveis de dose de radiação superiores a 1 Gy, porém em radiodiagnóstico estão na faixa de alguns mGy, e níveis muito altos de precisão são necessárias para promover o tratamento ideal. Isto exige uma atenção muito cuidadosa aos protocolos de medição altamente detalhados, bem como à calibração demorada de todos os TLDs para corrigir a não-linearidade da resposta à dose. Essas propriedades podem variar de lote para lote e também podem ser uma função da exposição à radiação, do aquecimento e histórico de manuseio. Deste modo, mesmo com excelentes avanços nos estudos do TLD com relação aos tratamentos térmicos e às formas de análise da curva de emissão TL, é necessário continuar os estudos a fim de possibilitar uma melhor utilização desta técnica na clínica. Uma análise computadorizada da curva de emissão (CGCA do inglês, computadorized glow curve analisys) foi implementada utilizando dados provenientes do software WinREMS de dosímetros TL que absorvem e armazenam a energia da radiação ionizante, reemitida na forma de fóton na região do ultravioleta visível. A luz emitida é, então, detectada por uma fotomultiplicadora e correlacionada à dose absorvida recebida pelo material. Os picos de emissão foram ajustados por meio de um algoritmo no programa MATLAB adotando-se o modelo de cinética de primeira ordem. O material testado foi o LiF:Mg,Ti (fluoreto de lítio dopado com magnésio e titânio) da marca Harshaw e a qualidade do ajuste foi determinada por um parâmetro chamado figura de mérito (FOM - do inglês, figure of merit). O menor FOM obtido para o grupo de dosímetros foi de 1,04 % e o maior foi de 9,79 %. Também foi avaliada a dose mínima detectável, utilizando o parâmetro que apresentou melhor desempenho, segundo a homogeneidade do grupo de dosímetros. O valor médio de dose mínima apresentado foi 28 µGy. Os resultados de reprodutibilidade, índice de variabilidade do detector (DVI - do inglês, device variability index) foi 14,01 %, que pode ser explicado pelo alto número de dosímetros no lote. Então, com a diminuição do tempo de preparo do dosímetro e com a análise computadorizada da curva de emissão, a utilização clínica do TLD torna-se mais viável, visto que não houve interferência na sensibilidade do dosímetro. Apesar de a reprodutibilidade ter sido a cima do esperado, é indicado uma correção individual para cada dosímetro e o descarte daqueles que apresentarem valores mais discrepantes comparado ao lote. / In the decades of 1960 and 1970, the first investigations of termoluminescentes dosimeters (TLD), specifically, the dosimetric peaks quickly revealed a surprising number of phenomena that could be directly related to the density of ionization. A little later, in the years 80 and 90 at the beginning of the year, seemingly disconnected radiation induced phenomena were discovered on other systems based on lithium fluoride (LiF). The last decade, however, has witnessed the emergence of several models, spearheaded through a deeper understanding of the underlying TL mechanisms as well as in modeling specifically developed for microdosimetric and explain phenomena of ionization density. Many applications in radiation oncology provide levels of radiation dose in excess of 1 Gy, however in diagnostic radiology are in the range of a few mGy, and very high levels of precision are necessary to promote the ideal treatment. This requires careful attention to the highly detailed measurement protocols, as well as the time-consuming calibration of all TLDs to correct the non-linearity of dose-response. These properties can vary from batch to batch, and can also be a function of exposure to radiation, heating and handling history. In this way, even with excellent advances in the studies of the TLD for the heat treatment and the ways of issuing TL curve analysis, it is necessary to continue studies in order to enable a better use of this technique in the clinic. A computerized analysis of the emission curve (CGCA computadorized glow curve analysis) was implemented using data from the WinREMS software of TL dosimeters that absorb and store energy from ionizing radiation, reissued in the form of photon in the visible ultraviolet. The light emitted is then detected by a photomultiplier and correlated to the absorbed dose received by the material. The emission peaks were adjusted by means of an algorithm in MATLAB program by adopting the model of first-order kinetics. The material tested was the LiF: Mg, Ti (lithium fluoride doped with magnesium and titanium) brand Harshaw and the quality of the fit was determined by a parameter called figure of merit (FOM- figure of merit). The smallest FOM obtained for the group of dosimeters was 1.04% and the highest was 9.79%. Also minimum detectable dose was evaluated, using the parameter that showed better performance, according to the homogeneity of the Group of dosimeters. The average value of minimum dose presented was 28 µGy. The results of reproducibility, index of variability of the detector (DVI-English, device variability index) was 14.01%, which can be explained by the high number of dosimeters in the batch. Then, with the decrease in the time of preparation of the dosimeter and the computerized analysis of the emission curve, the clinical use of the TLD becomes more viable, since there was no interference on sensitivity of the dosimeter. Although the reproducibility have been above expectations, indicated a single correction for each badge and the disposal of those who submit more discrepant values compared to the batch.
|
163 |
Efeito da radiação UV e gama nas propriedades de absorção óptica, de ressonância paramagnética eletrônica e de termoluminescência na kunzita / Effect of UV and gamma radiation on the properties of optical absorption, electron paramagnetic resonance and thermoluminescence in kunziteSouza, Susana Oliveira de 26 February 2002 (has links)
O espodumênio (LiAl Si IND 2 O IND 6) de cor lilás, chamado kunzita, encontrado no Estado de Minas Gerais, foi investigado no presente trabalho. A análise de fluorescência de raios-X revelou, além das componentes básicas Si 0 IND 2, Al IND 2 O IND 3 e Li IND 2O, várias impurezas, sendo Mn e Fe as principais. Para comparação com o material natural, um policristal \"puro\" de -espodumênio foi produzido pela devitrificação de um vidro obtido da mistura de Si 0 IND 2, Al IND 2 0 IND 3 e Li IND 2 0. Esse método de devitrificação proporciona um processo importante e relativamente simples para produzir um policristal puro que pode ser usado na comparação do material natural. A curva de emissão termoluminescente (TL) da amostra recozida em 600°C por 1h apresentou picos em 145, 215, 350, 370 e 460°C, após uma irradiação com doses entre 10 e 5000Gy. A resposta TL desses picos, acima de 50Gy, é supralinear. A luz TL emitida por amostras naturais recozidas entre 500 e 900°C e, então, irradiadas, mostra que com o tratamento térmico em 900°C a sensibilidade TL aumenta por um fator de 3 comparado com o recozimento entre 500 e 800°C. Esses tratamentos térmicos afetam, também, a estrutura cristalina, mantendo a cristalinidade, mas produzindo um rearranjo nos planos de reflexão e no tamanho dos grãos. O espectro da luz TL da amostra natural apresenta uma banda em torno de 610nm, intensa e larga (-200nm) para todos os picos, embora uma banda muito fraca e larga seja, também, observada em torno de 480nm. Isto significa que, praticamente todos os elétrons que chegam na BC, após o aquecimento para a leitura TL, recombinam-se com um único centro, emitindo luz em torno de 610nm, sendo ele o centro de alumínio [Al O IND 4/h]. As medidas TL do policristal irradiado e não irradiado mostram que, exceto pelos picos TL em 350 e 370°C, todos os outros são devidos à defeitos intrínsecos. Esta conclusão é confirmada pelo espectro de emissão, o qual mostra na amostra artificial a mesma banda em 610nm. A luz UV induz diretamente a termoluminescência. Como a energia dos fótons é bem inferior à largura da banda proibida, a indução de TL foi interpretada como sendo devido à absorção de dois fótons. A resposta TL observada resultantes da irradiação UV de luz syncrotron ou com lâmpadas fluorescentes ou de Hg é diferente da produzida por irradiação gama e diferente entre elas próprias. Ainda não foi encontrada explicação para o fenômeno. No início da irradiação UV, para o pico de 460°C, predomina o acúmulo de transportadores de carga nas armadilhas. Com a longa exposição (>22h) há a diminuição desse pico, prevalecendo o processo de fototransferência acompanhado de fotoesvaziamento. A irradiação intensa cria vacâncias de oxigênio, que recebem em seguida, elétrons da ionização dando origem a centros F. O cristal torna-se predominantemente verde. As bandas de absorção óptica que surgem com irradiação e pertencem a esse centro F, 310, 360, 470 e 630nm, decaem entre 150 e 250°C. Esse comportamento é similar ao do pico TL em 220°C, indicando que esse centro TL está correlacionado ao centro F. Há forte evidência, como no quartzo contendo alumínio como impureza, que o íon de Al POT. 3+ tem a tendência de substituir o íon de Si POT 4+ no tetraedro Si O IND 4, dando origem ao centro [Al O IND 4] Este é neutralizado por um íon alcalino (Li POT. + ou Na POT. +). A irradiação remove M POT.+ e o radical resultante captura um buraco, dando origem ao centro de alumínio [Al O IND 4/h]. Foi aqui proposto, por isso, o seguinte mecanismo de emissão da luz TL em torno de 220°C: i) Durante a irradiação formam-se os centros F e os centros de alumínio. ii) Durante o aquecimento na região de 150°C a 220°C para a leitura TL, tem-se: a. Centro F ---- calor Vacância de O + 2e POT (ou E IND 1+ e POT. ). b. [Al 0 IND 4 /h]+ e POT - [Al O IND 4] POT - + hv IND. TL (pico de 220°C) Foi constatado que a banda de AO em 530nm cresce entre 200 e 300°C, decaindo além de 300°C, para tornar a kunzita incolor em torno de 400°C. Como o Mn POT .3+ é suposto ser o responsável pela cor lilás, ele dá origem à banda em 530nm. Por outro lado, o tratamento térmico isócrono mostra que os picos TL em 350°C e 370°C decaem entre 320 e 375°C, mostrando que há forte correlação entre a banda de absorção em 530nm e os picos TL em 350 e 370°C. Foi, então, proposto que o Mn POT. 4+, presente na amostra, se torna Mn POT. 3+ como aquecimento entre 200 e 300°C, capturando um elétron. Com o aumento da concentração de Mn POT 3+a cor lilás fica mais intensa. Acima de 300°C, tem-se a liberação de um elétron do Mn POT. 3+, que se torna novamente Mn POT 4+. O elétron assim liberado pode recombinar-se com o centro de alumínio e há emissão de luz TL. Comparando-se o comportamento térmico do pico TL em 460°C e um sinal em g= 1,997 pode-se afirmar que os dois centros têm uma relação íntima. Esse centro paramagnético tem semelhança ao centro E IND 1 \', porém, nenhuma indicação definitiva dessa identificação foi encontrada. / Natural spodumene, LiAlSi2O6, of lilac colour, called kunzite, from Minas Gerais State, Brazil, was investigated. An X-ray fluorescence analysis revealed several impurities, Mn and Fe being the principal ones, besides the matrix components SiO2, Al2O3 and Li2O. For comparison a pure policrystal of -spodumene was produced by devitrifying a glass obtained from Si02, Al2O3 and Li2O. The devitrification process has proved to be an important and relatively simple process to produce a \"pure\" polycrystal, which can be used for comparison with a natural sample. The TL glow curves of kunzite annealed at 600°C for 1h presented TL peaks at 145, 215, 350, 370 and 460°C, after gamma-irradiation with doses varying between 10 and 5000Gy. The TL response of these peaks, above 50 Gy, is supralinear. The TL light emitted by samples heated with treatments between 500 and 900°C and, then, irradiated showed that TL sensibility of kunzite is increased for 900°C by a factor of 3. Since X-ray diffraction of all heat treated samples shows changes in diffraction lines, keeping their crystallinity, such heat treatment seems to produce rearrangement of reflection planes, as well as, of grain sizes. The spectrum of TL emission consists of a very large band around 610nm and a very weak one around 480nm. This means that during heating from TL reading, most of the liberated electrons recombine with only one recombination center, with has been identified as the aluminum center, [AlO4/h]. The TL measurements of an irradiated and non-irradiated artificial polycrystal showed that except for the 350 and 370°C TL peaks, the others are due to intrinsic defects. This conclusion is confirmed by the TL emissions spectra, which shows in the artificial sample the same band at 610nm. The UV light from a fluorescence lamp or usual Hg lamp induce thermoluminescence after 3h or longer exposure. Since photon energy from such UV source is about half of spodumene band gap energy or of other silicate crystals, we assume that it is a two-photon absorption process. Under very long time exposure to UV light, the intensity of the TL peak at 460°C decreases, while high energy photons produce an increase in the intensity until it reaches saturation. It is quite possible that, while the irradiation time is less than ~20h the filling traps (relative to 460°C TL peak) predominante, but, as a large number of the traps are filled, phototranfer becomes effetive emptying these traps. Of course, bleaching process also contribute to decrease the 460°C TL peak. The thermoluminescence induced by Hg lamp UV light, as well as by synchrotron VUV light, differs from that induced by high energy photons, for instance X- or y-rays. So far, no explanation was found. A relatively heavy irradiation creates in the crystal oxygen vacancies, which become F-center after capturing electrons released by ionization. The kunzite then becomes green coloured. The optical absorption bands at 630, 470, 360 and 31 O nm belong to this F-center. All of them are annealed out in the 150 to 250°C temperature region. Since the TL peak at 220°C has similar thermal behaviour, this peak is correlated to the F-center. In silica and silicate crystals there is a tendency for substitution of Si4+ by AI3+. The charge neutrality is guaranteed by alkaline ions, in the case of kunzite by Na+ ions, usually present. Then, during irradiation one has: Lattice with O2- --irrad. Vacancy of O2- in the lattice Vac. O2- + 2e- F-center [AlO4 / M] --irrad. [ALO.]- + M+ [ALO4]- + h [AlO4]- /h] = aluminum center During the TL reading (heating): F-center --heat Vac.O + 2e- (or E1\' +e-) [AlO4 / h] + e- [ALO4]- + hv TL (220°C TL peak) The optical absorption band at 530nm is correlated with lilac colour of kunzite, therefore, it is related to Mn3+. Since heating from 200 to 300°C enhances the colour it was assumed that Mn4+ traps an electron becoming Mn3+. The lilac colour of kunzite fades beyond 300°C leaving the kunzite colourless around 400°C. On the other hand, TL peaks at 350 and 370°C decrease similarly between 300 and 400°C, therefore, it was concluded that these TL peaks are correlated with Mn3+ centers responsible for the 530nm OA band. A week EPR signal with g=1.997 was observed, which decays in a very similar way to 460°C TL peak. Hence we conclude that they are one and the same center. Its nature was not identified, although the experimental result show that it is E1 -like center.
|
164 |
Propriedades de termoluminescência, de ressonância paramagnética eletrônica e de centros de cor de diopsídio / Thermoluminescence, electron paramagnetic resonance and color centers properties of diopsideNilo Francisco Cano Mamani 09 October 2007 (has links)
No presente trabalho foram estudadas algumas propriedades de Termoluminescência (TL), Ressonância Paramagnética Eletrônica (RPE) e Refletância de uma amostra natural e de amostras artificiais de diopsídio. A curva de emissão TL das amostras tratadas termicamente a 600 `GRAUS´ C/1hr e irradiadas com dose gama mostraram um pico em aproximadamente em 160 `GRAUS´ C, que depois ficou demonstrado ser uma superposição de três picos em 160 `GRAUS´ C, 197 `GRAUS´ C e 230 `GRAUS´ C, além dos picos TL em 300 `GRAUS´ C, 350 `GRAUS´ C e 450 /C, mas de intensidade bem menor que os dos outros. Foram produzidas amostras artificiais de diopsídio, pelo método de devitrificação, uma pura e outras dopadas, separadamente, com Al, Fe e Mn. A amostra artificial pura apresentou todos os picos entre 160 e 350 `GRAUS´ C, encontrados no diopsídio natural, indicando que todos esses picos são devido a defeitos intrínsecos. A presença de Al e Mn afeta esses picos TL. O Fe, conhecido como \"killer\" abafa praticamente todos os picos, exceto o de 450 `GRAUS´ C que não depende de irradiação como os outros. O espectro de emissão TL da amostra natural apresentou uma banda em 435 nm indicando que só há um centro de recombinação, que é devido à presença de Al. A sensibilidade TL aumenta com o tratamento térmico antes da irradiação. Os picos TL crescem linearmente com a dose gama de irradiação, exceto na amostra artificial dopada com Al onde o pico em 410 `GRAUS´ C cresce sublinearmente. A irradiação UV produz decaimento na intensidade TL (fotoesvaziamento). Por outro lado induz picos TL em 90 `GRAUS´ C e 170 `GRAUS´ C nas amostras naturais pré-recozidas a 600 `GRAUS´ C por uma hora, picos não observados com banda em 1050 nm também foi observada no diopsídio artificial dopado com Fe; as bandas em 1390 nm (OH), 1910 nm H2O, 2310 nm e 2385 nm decrescem de intensidade com o aquecimento, sendo que algumas até desaparecem. No espectro de RPE foram detectados três centros. Um devido ao `Mn POT.2+´, cujo espectro RPE da amostra em pó apresenta as seis linhas hiperfinas típicas na região de 3000 a 4500 G, sendo que esses sinais não são afetados pela radiação gama e nem pelo recozimento térmico. Na amostra monocristalina orientada na direção z foram observadas todas as linhas do `Mn POT.2+´. O segundo centro é devido ao `Fe POT.3+´ em g=4,3, o recozimento na região de 500 até 900 `GRAUS´ C mostrou que o íon `Fe POT.2+´ oxida-se para `Fe POT.3+´, esse mesmo comportamento foi observado nas medidas de refletância. O terceiro centro identificado por RPE localizado em g=2,007, é o `E\' IND.1´. Os três centros observados por RPE na amostra natural, foram confirmados nas amostras artificiais de diopsídio. A emissão de luz TL envolve centros de Ti, de Al e centros `E\' IND.1´. O seguinte mecanismo de emissão TL e formação dos picos TL entre 160 e 230 `GRAUS´ C, em torno de 300 `GRAUS´ C e em torno de 350 `GRAUS´ C, é proposto: A irradiação cria os centros de Ti, de Al e o centro `VO POT.2-´. `VO POT.2-´ corresponde à vacância de oxigênio que capturou dois elétrons. Durante o aquecimento: Entre 150 e 250 `GRAUS´ C, o centro `VO POT.2-´ libera um elétron, que se recombina com os centros de Ti e de Al dando lugar ao centro `E\' IND.1´ e emissão de luz TL de 435 nm. O pico TL em torno de 160 `GRAUS´ C, composto de 3 picos é formado. O centro de Ti é eliminado, mas parte do centro de Al ainda permanece. Entre 250 e 300 `GRAUS´ C, os centros `VO POT.2-´ continua emitindo elétrons, cada um dos quais se recombina com uma parte do centro de Al remanescente emitindo a luz TL de 435 nm e formando mais centros `E\' IND.1´. Como, experimentalmente, se sabe que a concentração de centros `E\' IND.1´ atinge o máximo em 300 `GRAUS´ C, é natural admitir que, todos os centros `VO IND.2-´ se converteram em centros `E\' IND.1´. Entre 300 e 400 `GRAUS´ C, os elétrons dos centros `E\' IND.1´, formados acima, são liberados, cada um dos quais se recombina com os centros de Al que restam, observando-se a emissão de luz TL em 435 nm. Nessa temperatura, tanto os centros `E\' IND.1´ dão lugar às vacâncias de oxigênio VO, como os centros de alumínio [`AlO IND.4´/h] dão lugar aos centros `[`AlO IND.4´] POT.-´ que, para neutralidade de carga atraem íons alcalinos `M POT.+´ para formarem os centros `[`AlO IND.4´/`M POT.+´] POT. 0´. O pico em 350 `GRAUS´ C é originado nesse processo. A partir de diopsídio natural foi obtido vidro. O vidro apresentou sinais RPE de `Fe POT.3+´ em torno de 1700 G e as seis linhas típicas do `Mn POT.2+´ em torno de 3470 G. Uma banda de refletância devido a `Fe POT.2+´ com um máximo ao redor de 1000 nm é observada. / Diopside of chemical formula, CaMgSi2O6, a natural silicate mineral has been investigated concerning its Thermoluminescence (TL), Electron Paramagnetic Resonance (EPR) and Reflectance properties. Synthetic, pure or doped diopside, produced in the laboratory, has been investigated. Samples annealed at 600 `GRAUS´ C for one hour, to eliminate previously induced TL, and irradiated at several gamma-doses, presented glow curves with TL peaks around 160, 300, 350 and 450 `GRAUS´ C. Later on, the broad peak around 160 `GRAUS´ C was proved to be a superposition of peaks at 160, 197 and 230 `GRAUS´ C. The pure synthetic diopside presented TL peaks at 160 to 350 `GRAUS´ C, indicating that these peaks are due to intrinsic defects. Synthetic samples containing Al or Mn have indicated that these dopants interfere with TL peaks found in the natural diopside. Fe, on the other hand, known as \"killer\", precludes the appearance of all the peaks, except at 450 `GRAUS´ C, peak that is not affected by radiation and heat. The TL emission spectrum has presented only one band around 435 nm. This fact indicates that there is only one kind of recombination center. An annealing at temperatures above 800 `GRAUS´ C up to 1000 `GRAUS´ C yields an enhancement in the TL sensitivity up to a factor of 2. Beyond 1000 `GRAUS´ C heating, an opposite effect takes place. Except for 410 `GRAUS´ C peak found in the Al-doped artificial diopside, all the other peaks grow linearly with radiation dose, but saturate beyond `DA ORDEM DE´ kGy. In a previously gamma-irradiated sample, all the peaks are bleached rapidly under ultraviolet radiation shining. The UV light, on the other hand is able to induce TL, however only TL peaks around 90 and 170 `GRAUS´ C are observed. No explanation has been found as yet, why gamma-rays and UV light induce TL with different results.The spectrum of reflectance has shown several bands at 1050, 1390, 1910, 2310 and 2385 nm. The 1050 nm band is due to Fe2+ which is substitutional to a Mg2+ ion. This band was also observed in Fe- doped synthetic diopside. 1390 nm band is due to OH and 1910 nm to H2O; they, together with 2310 and 2385 nm bands decrease with temperature. In the EPR measurements, hyperfine signals due to Mn2+ in the region of 3000 to 4000 Gauss, g=4.3 Fe3+ signal and g=2.007 lines due to `E\' IND.1-´ center have been detected. Two first ones do not depend on irradiation. On the other hand, an annealing between 500 and 900 `GRAUS´ C decreases 1050 nm Fe2+ band followed by increase in g=4.3 Fe3+ lines, because of the oxidation of Fe2+ converts this ion into Fe3+ ion. The EPR signal of `E\' IND.1´ center increases with temperature, reaching a maximum value at 300 `GRAUS´ C, but decreasing for higher temperatures, with its extinction at 400 `GRAUS´ C. The TL light emission involves `i- , Al- and `E\'IND.1-´ centers. The following mechanism is here proposed. The irradiation creates Ti- , Al- and `VO POT.2-´ - centers. where the is an oxygen vacancy has captured two electrons. Ti- and Al- centers are of the form [`TiO IND.4´/h] and [`AlO IND.4´/h], respectively, where h denotes a hole. During heating for TL read out: Between 150 and 250 `GRAUS´ C , the `VO POT.2-´ center releases an electron that recombines with the Ti and Al centers giving the `E\' IND.1´ center and emission of light at 435 nm. The TL peak around 160 `GRAUS´ C composed of three individual peaks is formed. The Ti center is eliminated while the Al center still stays. Between 250 and 300 `GRAUS´ C, the `VO POT.2-´ centers continue to liberate electrons and their recombinations with holes in Al centers, result in the emission of TL light at 435 nm. Additional `E\' IND.1´ center is created. Experimentally it is known that the concentration of `E\' IND.1´ centers reaches its maximum at 300 `GRAUS´ C, for this, we can say that all the `VO POT.2-´ centers were converted into `E\' IND.1´ centers. Between 300 and 400 `GRAUS´ C, the `E\' IND.1´ centers liberate their electrons and each one recombines with a hole in remaining Al centers. Then, the TL light at 435 nm is emitted again. At this temperature, the `E\' IND.1´ centers give place to oxygen vacancies VO and the [`AlO IND.4´/h] centers convert to `[`AlO IND.4´] POT.-´ centers. To neutralize the charge this centers attract `M POT.+´ alcali ions to form the `[`AlO IND.4´/`M POT.+´] POT.0´ centers. The TL peak at 350 `GRAUS´ C is due to this process. From the natural diopside samples was obtained glass of diopside. The glass shows EPR component of `Fe POT.3+´ around 1700 G and six typical lines of `Mn POT.2+´ around 3470 G. A reflectance band due to `Fe POT.2+´ at approximately 1000 nm was observed
|
165 |
Caracterização dosimétrica de amostras de BeO em feixes de radiação alfa, beta e X por técnicas luminescentes / Dosimetric characterization of BeO samples in alpha, beta and X radiation beams using luminescent techniquesDaniela Piai Groppo 29 October 2013 (has links)
No campo da medicina, a radiação ionizante é utilizada tanto para fins terapêuticos como para fins diagnósticos, englobando assim um amplo intervalo de doses de diferentes tipos de radiações. Para assegurar que a finalidade da prática esteja sendo alcançada, são necessários estudos detalhados de detectores e dispositivos que respondam a diferentes tipos de radiações. Neste trabalho foi realizada a caracterização dosimétrica de amostras de BeO utilizando as técnicas de termoluminescência (TL) e luminescência opticamente estimulada (OSL) comparando-se as respostas para as radiações alfa, beta e X e propondose um sistema adequado para sua utilização em monitoração de feixes destas radiações. Dentre os principais resultados obtidos estão: alta sensibilidade à radiação beta para ambas as técnicas empregadas, boa reprodutibilidade das respostas TL e OSL (coeficientes de variação inferiores a 5%), uma dependência energética máxima da radiação X de 28% para técnica TL, e de apenas 7% para a técnica OSL, dentro dos intervalos de energia estudados. As características dosimétricas obtidas neste trabalho mostram a possibilidade de aplicação das amostras de BeO em dosimetria das radiações ionizantes X, alfa e beta, considerando os intervalos de dose empregados, pelas técnicas de TL e OSL. Pelos resultados obtidos, as amostras de BeO apresentaram sua utilização potencial para dosimetria de feixes de radiodiagnóstico e radioterapia. / In the medical field, the ionizing radiation is used both for therapeutic and diagnostic purposes, in a wide range of radiation doses. In order to ensure that the objective is achieved in practice, detailed studies of detectors and devices in different types of radiations beams are necessary. In this work a dosimetric characterization of BeO samples was performed using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL) by a comparision of their response for alpha, beta and X radiations and the establishment of an appropriated system for use in monitoring of these radiations beams. The main results are: the high sensitivity to beta radiation for both techniques, good reproducibility of TL and OSL response (coefficients of variation lower than 5%), maximum energy dependence of the X radiation of 28% for the TL technique, and only 7% for the OSL technique, whithin the studied energy range. The dosimetric characteristics obtained in this work show the possibility of applying BeO samples to dosimetry of alpha, beta and X radiations, considering the studied dose ranges, using the TL and OSL techniques. From the results obtained, the samples of BeO showed their potential use for beam dosimetry in diagnostic radiology and radiotherapy.
|
166 |
Caracterização dosimétrica do BeO em feixes de radiodiagnóstico convencional, mamografia e tomografia computadorizada, pelas técnicas de termoluminescência e luminescência opticamente estimulada / Dosimetric characterization of BeO in standard beams of conventional diagnostic radiology, mammography and computed tomography, by the thermoluminescence and optically stimulated luminescence techniquesFábio Junqueira Algarve 18 August 2017 (has links)
A radiação ionizante é amplamente utilizada em diversas áreas na indústria e na medicina. No campo da medicina, a radiação ionizante é utilizada tanto para fins terapêuticos como para fins diagnósticos, abrangendo assim um grande intervalo de doses de diferentes tipos de radiações. Para certificar que a finalidade da prática esteja sendo alcançada, são necessários estudos detalhados de detectores e dispositivos que atendam aos diferentes tipos de radiações. Neste trabalho foi realizado um estudo das características dosimétricas de amostras de BeO em feixes padronizados de radiodiagnóstico convencional, mamografia e tomografia computadorizada, utilizando as técnicas de termoluminescência (TL) e luminescência opticamente estimulada (OSL) e propondo um sistema adequado para sua utilização em dosimetria de feixes. Os principais resultados obtidos foram: alta sensibilidade à luz branca durante a irradiação, boa reprodutibilidade das respostas TL e OSL (coeficientes de variação inferiores a 5%), parâmetros cinéticos correspondentes aos valores obtidos em todos os métodos testados, sem fading dentro do período estudado para ambas as técnicas. As características dosimétricas obtidas neste trabalho mostram a possibilidade de aplicação das amostras de BeO em dosimetria da radiação X, considerando os intervalos de dose empregados, pelas técnicas de TL e OSL. Assim, as amostras de BeO apresentaram sua utilização potencial para dosimetria de feixes de radiodiagnóstico convencional, mamografia e tomografia computadorizada. / The ionizing radiation is widely used in several areas in industry and medicine. In the field of medicine, the ionizing radiation is used both for therapeutic purposes and for diagnostic purposes, thus covering a wide range of doses of different types of radiation. To certify that the goal of practice is being achieved detailed studies of detectors and devices that respond to different types of radiation are required. In this work, a study of dosimetric characteristics of BeO samples was performed in standard beams of conventional diagnostic radiology, mammography and computed tomography, using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL), and proposing a suitable system for its use in beam dosimetry. The main results obtained were: high sensitivity to white light during the irradiation, good reproducibility of responses TL and OSL (coefficients of variation of less than 5%), and kinetics parameters corresponding to the values obtained in all of the tested methods, without fading within the observed period for both techniques. The dosimetric characteristics obtained in this work show the possibility of application of BeO samples for dosimetry of X radiation, considering the tested dose interval, by the TL and OSL techniques. Thus, the BeO samples presented potential use for dosimetry of conventional diagnostic radiology, mammography and computed tomography beams.
|
167 |
Propriedades de ressonância paramagnética eletrônica, absorção ótica e termoluminescência na morganita / Properties of electron paramagnetic resonance, optical absorption, and thermoluminescence in morganiteArenas, Jorge Sabino Ayala 10 February 2003 (has links)
No presente trabalho foram investigadas as propriedades de centros de cor, de centros paramagnéticos e de centros de termoluminescência e, sua dependência com os defeitos intrínsecos e extrínsecos do berilo cor de rosa (chamada morganita) natural. O berilo, de fórmula química Be3 Al2 Si6 O18 é um cristal de silicato de alumínio e berílio que, por ser natural, encerra na sua rede cirstalina inúmeras impurezas. A análise por fluorescência de raios X revelou Na, Fe, Mn, Co, K, como átomos estranhos à rede cristalina com maior concentração e outros elementos em menor quantidade. O presente trabalho mostrou que somente Fe, Mn e Na (talvez K) como impureza atuantes, as outras não tendo influência sobre as propriedades em estudo. Uma amostra de morganita, tratada em 600º por uma hora, depois de irradiada com raios gama de uma fonte de 60Co, apresentou picos termoluminescentes (TL) em torno de 160ºC, 220ºC, 340ºC. A altura do pico de 160ºC cresce muito rapidamente com a dose da radiação tal que, os dois outros ficam escondidos. Estes podem ser destacados submetendo a amostra irradiada a um recozimento em 160ºC por 5 a 10 minutos. Quando uma amostra natural é tratada termicamente entre 500ºC e 900ºC por cerca de uma hora, a irradiação subsequente (no caso com 2 kGy de dose), produz pico TL em 160ºC crescente com a temperatura, enquanto que os dois outros picos decrescem. O tratamento térmico provoca um rearranjo na rede cristalina que favoreceu o crescimento do pico TL em 160ºC. A irradiação com luz UV de uma lâmpada de Hg (e também de Xe) induziu termoluminescência. Como a energia de um fóton de UV é meno do que a largura da banda proibida, esse resultado foi interpretado à luz da absorção de dois fótons, mecanismo, estudado por Maria Göppert-Mayer em 1931. O espectro de EPR da morganita natural apresenta sinais típicos de Mn2+, Fe3+ e do átomo H0. O centro H0 cresce com irradiação - gama, mas, é destruída por calor, a intensidade do sinal decaindo entre 160ºC e 300ºC. Na região do campo magnético entre 3100 e 3500 Gauss, são observados varias linhas EPR. A linha em g 2,0143 foi identificado como sendo devido ao radical CO3 proveniente de CO-2.3->CO-3 +e- ou HCO-3->H0+ CO-3, ambas as reações ocorrendo durante a irradiação. As linhas entre 3350 Gauss e 3360 Gauss podem ser uma superposição das linhas de Fe3+ e CH4. O espectro de absorção ótica de uma amostra natural entre 200 nm e 3200 nm apresentou bandas intensas de H2O, que são encontradas grande quantidade nos canais do berilo. O limiar de absorção UV situa-se em cerca de 350 nm. Bandas muito fracas são observadas na região visível, entre elas, as conhecidas bandas de Maxixe. Uma banda típica devido a Fe2+ é observada em 820 nm, que não se altera muito quando a morganita natural sobre um tratamento térmico em 700ºC por uma hora. As outras bandas, exceto de H2O, sofrem decréscimos consideráveis. Esse tratamento térmico revela bandas em 205 e 235 nm na região de UV. Uma irradiação muito intensa até 68 kGy aumenta a absorção UV, incluindo as bandas em 205 e 235 nm, atingindo a intensidade de absorção constante e patamar entre 200 e 250 nm. Essas irradiações intensas aumentam ligeiramente a banda de Fe2+, mas, tornam evidentes as bandas de Maxixe e bandas em 430 nm e 555 nm. / The relationship between point defects in a natural pink beryl (morganite) and its optical absorption, electron spin resonance and thermoluminescensce properties has been investigated. Beryl with chemical formula Be3 Al2 Si6 O18, is an aluminum silicate of beryllium, it is found in nature containing several impurities. A X-ray fluorescence analysis revealed Na, Fe, Mn, Co and F as impurities with large concentration and others in smaller concentration. The present work has shown that only Na, Fe an Mn have influence on properties of interest while others have none. A sample of morganite heat treated at 600°C for one hour, after being irradiated with 60Co gamma-rays exhibits thermoluminescesce (TL) peaks at 160, 220 and 340°C. the TL peak at 160°C grown very fast with radiation dose and the two others become hidden. It is necessary to annel at 160°C for few minutes in order to allow the TL peaks at 220 and 340°C to be isolated. The UV light from Hg lamp (and also Xe lamp) induces TL. Since an UV photon has not enough energy to promote one electron from the valence band to the conduction band, this result was considered as the effect of two photon absorption. Reported long time ago by M. Goppert-Mayer. The EPR spectrum of natural morganite shows the typical signals of Mn2+, Fe3+ and H°-center. H°-center grows with irradiation, but it decreases with heat, its intensity decreases between 160 and 300°C. In the interval of 3100 and 3500 Gauss of magnetic field, several EPR lines are observed, being the g 2,0143 signal identified as the CO-3 radical. This comes from the reaction CO2-3 -> CO-3 +e - or from HCO-3 -> H° + CO-3, both of them induced by irradiation. The lines seen between 3350 and 3360 Gauss can be attributed to the superposition of Fe3+ and CH4 lines. The optical absorption spectrum between 200 and 3200 nm has presented very strong bands due to H2O which are found in large amount in the beryl channels. The UV absorption edge occurs at around 350 nm. Few weak bands are present in visible region, three of them are known as Maxixe bands. A band at 820 nm is characterized of Fe2+, this band changes little on irradiation or heating. Except the H2O bands, there are bands decaying considerably under heat treatment: at 500 to 800°C, 700°C for one hour annealing shows clearly absorption bands at 205 and 235 nm, both in UV region. Irradiations up to about 70 kGy (very strong) increase highly the UV absorption including 205 and 325 nm. Such absorption is observed as a constant plateau located between 200 and 250 nm, for high dose. Strong irradiation changes slightly the Fe2+ band, and the other bands in the visible grow considerably.
|
168 |
Dose Validation for Partial Accelerated Breast Irradiation treated with the SAVI ApplicatorUnknown Date (has links)
The purpose of this study is to verify and validate the dose at various points of
interest in accelerated partial breast irradiation (APBI) treated with the Strut Adjusted
Volume Implant (SAVI) applicator using Thermoluminescent Dosimeters (TLDs). A set
of CT images were selected from a patient’s data who had received APBI using the SAVI
applicator. The images were used to make 3D models. TLDs were calibrated for
Brachytherapy. Various points of interest were marked out and slots were carved in the 3D
models to fit the TLDs. CT scans were taken of the 3D models with expanded SAVI
applicator inserted. A plan was made following B-39 protocol. The TLDs were read and
the absorbed doses were calculated and compared to the delivered doses. The results of this
study show that the overall average reading of the TLDs is within expected value. The TPS
shows overestimated dose calculations for brachytherapy. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
169 |
Determination of dose distribution of Ruthenium-106 Ophthalmic applicatorsTakam, Rungdham. January 2003 (has links) (PDF)
"August 2003" Bibliography: leaves 108-117. 1. Ruthenium-106 ophthalmic applicators -- 2. General principle of thermoluminescent dosimeter -- 3. Study of basic characteristics of CaSO4:Dy TLD -- 4. Measurements of COB and CCA type ruthenium-106 ophthalmic applicator dose distributions -- 5. Determination of the dose rate distribution using a MOSFET detector -- 6. Summary and conclusion. In this project, small CaSO4:Dy TLDs and a semiconductor MOSFET dosimeter were used for the determination of on-axis depth dose-rate distributions of 15-mm and 20-mm ruthenium-106 applicators in acrylic eye phantoms. The TLDs were also used to determine off-axis dose distributions.
|
170 |
Effets du zirconium, du manganèse et du titane sur la thermoluminescence et la réactivité de l'alumine-alphaSallé, Christian 18 December 2003 (has links) (PDF)
Pour obtenir des matériaux céramiques aux propriétés contrôlées il est le plus souvent fait appel à l'utilisation d'additions minérales en faible quantité. <br />Ces ajouts permettent de favoriser la densification ou de contrôler le phénomène de grossissement des grains, ou encore de modifier les propriétés mécaniques, physiques ou optiques.<br />Cette étude a pour objectif de caractériser et de modéliser l'action de certains dopants à la fois sur la réactivité et la microstructure, et sur les propriétés optiques de l'alumine-alpha. <br />Nous avons montré que la thermoluminescence (TL) basse température après une excitation UV est une excellente technique permettant de détecter la présence de la phase quadratique de la zircone, stabilisée par l'alumine. La TL basse température des composites alumine-manganèse est influencée par une émission à 675,5-679 nm. Plusieurs hypothèses sur le(s) centre(s) de recombinaison responsable(s) de cette émission ont été avancées : Mn4+, Cr3+ présent dans un environnement autre que l'alumine, ou à la fois Mn4+ (à 675,5 nm) et Cr3+ dans un autre réseau (à 679 nm). La TL basse température des composites alumine-titane est influencée par l'ion Ti3+ agissant comme centre de recombinaison et comme centre piège. La TL à température ambiante des composites alumine-titane est influencée par l'ion Ti4+ agissant comme centre de recombinaison et comme centre piège. Cette influence de Ti4+ se traduit notamment sur le pic D' par une double bande d'émission bleue-verte attribuable au centre Ti4+ et à l'agrégat (Ti4+-VAl').<br />Nous avons mis en évidence pour les composites alumine-zircone, qu'un traitement thermique du mélange sera préférable pour l'aptitude au frittage à un traitement des oxydes seuls avant mélange. La présence de manganèse favorise la densification de l'alumine, en particulier grâce à un frittage en phase liquide. On le constate par la présence d'un pic dérivé de dilatométrie supplémentaire à haute température. Nous avons pu mettre également en évidence la présence de ségrégation aux joints de grains avec drainage des impuretés fer, calcium avec le manganèse. La présence de titane favorise la densification de l'alumine, ainsi que le grossissement des grains. Nous avons pu mettre en évidence la ségrégation aux joints de grains d'excès de TiO2 au-delà de la limite de solubilité, ainsi que la présence de la phase secondaire Al2TiO5 en surface des échantillons.
|
Page generated in 0.056 seconds