• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 23
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

Salcedo, David Leandro Palomino 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
22

Simulações computacionais na proteína TM1030 da bactéria hipertermófila Thermotoga maritima / Computational simulations at TM1030 protein of hyperthermofile Thermotoga maritima bacterium

David Leandro Palomino Salcedo 19 January 2016 (has links)
A Thermotoga marítima (Tm) é uma bactéria que vive em temperaturas na faixa dos 65 até 90°C, com temperatura ótima do redor dos 80°C. A proteína TM1030 de Tm, é um regulador transcricional da família TetR (Tetracycline repressor protein) reguladores da expressão génica das proteínas TetA e TetB (Tetracycline resistance protein). Neste trabalho se rodarem 200ns de trajetória de dinâmica molecular a três temperaturas (293, 323 e 353K) da proteína TM1030 (PDB-1Z77) usando o pacote GROMACS com o potencial Amber99 e solvente explicito numa caixa cúbica com 90Å de comprimento, observando que RMSD da estrutura média da trajetória é menor em relação à estrutura cristalográfica, além disso que num primer momento esse RMSD tem uma mudança grande e que se estabiliza com uma maior velocidade nas maiores temperaturas. Também foi feito um analise de modos normais na mesma estrutura usando o mesmo potencial, mas com solvente implícito, usando o modelo GBSA, minimizando a estrutura até ter um coeficiente de força média de 6,4x10-8J·mol-1·cm-1 que assegura um bom mínimo local. Das trajetórias simuladas a partir das 6 menores frequências se achou uma relação com os movimentos observados nas dinâmicas moleculares e os esperados na transição alostérica entre as duas estruturas cristalográficas. Finalmente se calculam os fatores de temperatura das três trajetórias de dinâmica molecular, observando que seus esses fatores de temperatura aumentam com o aumento da temperatura, contrario do esperado da cristalografia onde diminuam com o aumento da temperatura do sistema. / The Thermotoga maritima (Tm) is a bacterium who can lives at temperatures of 65 to 90°C, with optimum temperature around of 80°C. The TM1030 protein of Tm is a transcriptional regulator from TetR family (Tetracycline repressor protein) regulators of gene expression of the TetA and TetB protein (Tetracycline resistance protein). In this work 200ns of molecular dynamics trajectory was run at three temperatures (293, 323 and 353K) of TM1030 protein (PDB-1Z77) using GROMACS package with Amber99 potential and explicit solvent in a cubic box with length 90A, noting that RMSD of the average structure of the trajectory is smaller with respect to the crystallographic structure, in addition, in a first time this RMSD have a large change and stabilizes at a higher speed at higher temperatures. There was also an analysis of normal modes on the same structure using the same potential, but with implicit solvent, using the GBSA model, minimizing the structure to have a medium force coefficient of 6,4x10-8J·mol-1·cm-1which ensures a good local minimum. Of the trajectories simulated from 6 lower frequencies was found a relationship with the movements observed in molecular dynamics and expected the allosteric transition between the two crystal structures. Finally was calculate the temperature factor of the three trajectories of molecular dynamics, observing their temperature factors increase with increasing temperature, contrary to expectations of crystallography which decrease with the increase of the system temperature.
23

Etude de l'effet de l'oxygène sur la physiologie et le métabolisme de la bactérie hyperthermophile anaérobie thermotoga maritima

Lakhal, Raja 15 July 2011 (has links)
La bactérie hyperthermophile Thermotoga maritima a été cultivée dans un fermenteur dans lequel la concentration en O2 a été rigoureusement contrôlée. A 80°C et pH 7, il a été démontré que T. maritima pouvait survivre à des expositons de durées variables à l’O2 et qu’elle était capable de le consommer. La vitesse spécifique de consommation de l’O2 a été estimée à 73.6 µmoles O2.min-1.g protéines-1 lors d’une courte exposition à l’O2 (30 min). De longues expositions à l’O2 (20 h) nous ont permis de démontrer que la présence d’O2 ralentissait la croissance de T. maritima et conduisait à un shift du métabolisme vers la production de lactate aux dépens de l’acétate et à un arrêt de production d’H2. Dans ces conditions, il a été constaté que 73% du glucose était consommé selon un métabolisme partiellement oxydatif faisant intervenir simultanément les deux voies Embden-Meyerhof et Entner-Doudoroff de la glycolyse. En l’occurrence, l’oxydation incomplète du glucose est corrélée à la réduction de l’O2 en eau. Les études transcriptomiques ont montré que cette réduction de l’O2 résultait d’une cascade de réactions intermédiaires faisant intervenir des enzymes de type peroxydases [activation de l’expression des enzymes Ahp (alkyl hydroperoxyde réductase), Bcp1 et Bcp2 (thiol peroxydase thioredoxin-dépendante)] qui acheminent les électrons libérés via les radicaux libres. D’autres enzymes comme la rubréryhtrine et la neelarédoxine interviendraient pour détoxiquer les espèces réactives d’O2. Les électrons libérés seraient au final utilisés pour réduire l’O2 en H2O par l’enzyme FprA, dont l’expression varie en fonction du potentiel redox du milieu de culture. Ce schéma est proposé comme un des éléments essentiels du dispositif enzymatique permettant la consommation de l’O2 et la protection des cellules contre les effets des espèces réactives de l’oxygène chez T. maritima. / Batch cultures of the hyperthermophilic bacterium Thermotoga maritima were performed in a bioreactor where O2 concentrations in the gas phase were strictly controlled. At 80°C and pH 7, we demonstrated that T. maritima survived despite being exposed to oxygen at different times and that it consumed it. O2 uptake rate was estimated at 73.6 µmoles O2 min-1g proteins-1 during a short exposure to O2 (30 minutes). A long time exposure of T. maritima cultures to oxygen (20h) led to a drastic reduction in growth, together with a shift in glucose metabolism towards lactate instead of acetate production and a stop in H2 production. Under these conditions, it has been observed that 73% of glucose was partially oxidised by using both Embden-Meyerhof and Entner-Doudoroff glycolytic payhways. Uncomplete oxidation of glucose is correlated to a reduction of O2 to H2O. Transcription analyses revealed that this reductive process of O2 involved enzymes like peroxidases [activation of alkyl hydroperoxide reductase (ahp), bcp1 and thioredoxin-dependent thiol peroxidase (bcp 2)]. Moreover, genes encoding reactive oxygen species (ROS)-scavenging systems (neelaredoxin and rubrerythrin), were found to be upregulated during oxygen exposure. The oxygen reductase FprA, which expression was shown to depend on the redox level of the culture medium, is proposed as a primary consumer of O2. All these enzymes are essential for T. maritima to consume O2 consumption and to fight against the toxic effects of ROS in cells.
24

Application Deinococcus radiodurans on Cellulose Degradation

Fu, Yi-Ching 13 September 2002 (has links)
There are large amount of cellulose accumulated in radioactive waste and radioactive pollution sites. It is difficult to clean up these cellulose. In general, waste treatment process can only proceed until the radiation decay to a safty level. Since most cellulolytic microorganisms could not survive in radioactive waste, the accumulation of cellulose in radioactive waste become a serious problem. Deinococcus radiodurans is highly resistant to radiation, UV light, and dryness. It is possible to use this bacterial strain in the bioremediation of radioactive waste. In this study, we found out that there was not much difference on the growth of this organism under radiation and UV light. Cellulose enzyme activity was inhibited by UV irradiation, but not by 32P radiation. The addition of D. radiodurans whole cells or its cell crude extracts could protect the cellulase from UV damage. We also successfully constructed two plasmids, that contained a cel A gene isolated from Thermotoga maritima. These two plasmids had been used to transform Escherichia coli BL21 and D. radiodurans. All transformed bacterial strains could express celA activity. The celA activities in these transformed D. radiodurans strains were not affect by UV irradiation. However, celA enzyme activity in the transformed E. coli was greatly inhibited by UV irradiation up to 78%. Hopefully these two transformed D. radiodurans bacterial strains can be applied to the bioremediation of radioactive waste.
25

Estudos da estabilidade, flexibilidade e atividade enzimática da B-mananase da bactéria hipertermofílica Thermotoga petrophila

Silva, Viviam Moura da January 2014 (has links)
Orientador: Prof. Dr. Wanius José Garcia da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Biotecnociência, 2014. / A proteina endo-B-1,4-mananase da bacteria Thermotoga petrophila (TpMan) e uma enzima hipertermoestavel que catalisa a hidrolise de ligacoes B-1,4-manosidicas em varios polissacarideos contendo manana. Um recente estudo mostrou que a enzima TpMan e composta de um dominio catalitico GH5 e um dominio de ligacao ao carboidrato CBM27 conectados atraves de um linker, entretanto, ate o momento, a estrutura tridimensional cristalografica nao foi determinada para a enzima completa. Pouco se sabe sobre a conformacao da enzima TpMan intacta como tambem o papel do comprimento e flexibilidade do linker sobre o arranjo espacial dos dominio constitutivos. Neste estudo, nos reportamos a primeira caracterizacao estrutural da enzima TpMan completa utilizando a tecnica de espalhamento de raios-X a baixos angulos (SAXS) combinada com a estrutura tridimensional dos dominios individuais para elucidar o modelo de baixa resolucao, as dimensoes globais, e a flexibilidade desta enzima modular em diferentes temperaturas. Nossos resultados sao consistentes com um linker que apresenta uma estrutura compacta e que ocupa um pequeno volume quando comparado com seu grande numero de residuos de aminoacidos (102 residuos de aminoacidos). Alem disso, a 20 oC os resultados sao consistentes com um modelo onde a enzima TpMan e um monomero composto de tres dominios e que apresenta nivel de flexibilidade molecular em solucao. Mesmo a enzima intacta apresentando algum grau de flexibilidade, existe uma conformacao preferivel, a qual pode ser descrita pelo procedimento de modelagem de corpo rigido. Finalmente, os resultados indicam que a enzima TpMan sofre uma transicao dependente da temperatura entre estados conformacionais de sua estrutura secundaria regular. Nossos resultados sugerem que o linker pode otimizar a geometria entre os outros dois dominios com respeito ao substrato a altas temperaturas. Os estudos apresentados aqui devem proporcionar uma base util para futuros estudos biofisicos da enzima TpMan intacta.
26

Genome-Scale Metabolic Network Reconstruction of Thermotoga sp.Strain RQ7

Gautam, Jyotshana 18 December 2020 (has links)
No description available.
27

Biochemical Analysis of Thermotoga maritima Ribonuclease III and its Ribosomal RNA Substrates

Nathania, Lilian January 2011 (has links)
The site-specific cleavage of double-stranded (ds) RNA is a conserved early step in bacterial ribosomal RNA (rRNA) maturation that is carried out by ribonuclease III. Studies on the RNase III mechanism of dsRNA cleavage have focused mainly on the enzymes from mesophiles such as Escherichia coli. In contrast, little is known of the RNA processing pathways and the functions of associated ribonucleases in the hyperthermophiles. Therefore, structural and biochemical studies of proteins from hyperthermophilic bacteria are providing essential insight on the sources of biomolecular thermostability, and how enzymes function at high temperatures. The biochemical behavior of RNase III of the hyperthermophilic bacterium Thermotoga maritima is analyzed using purified recombinant enzyme and the cognate pre-ribosomal RNAs as substrates. The T. maritima genome encodes a ~5,000 nucleotide (nt) transcript, expressed from the single ribosomal RNA (rRNA) operon. RNase III processing sites are expected to form through base-pairing of complementary sequences that flank the 16S and 23S rRNAs. The Thermotoga pre-16S and pre-23S processing stems are synthesized in the form of small hairpins, and are efficiently and site-specifically cleaved by Tm-RNase III at sites consistent with an in vivo role of the enzyme in producing the immediate precursors to the mature rRNAs. T. maritima (Tm)-RNase III activity is dependent upon divalent metal ion, with Mg^2+ as the preferred species, at concentrations >= 1 mM. Mn^2+, Co^2+ and Ni^2+ also support activity, but with reduced efficiency. The enzyme activity is also supported by salt (Na^+, K^+, or NH4^+) in the 50-80 mM range, with an optimal pH of ~8. Catalytic activity exhibits a broad temperature maximum of ~40-70 deg C, with significant activity retained at 95 deg C. Comparison of the Charged-versus-Polar (C-vP) bias of the protein side chains indicates that Tm-RNase III thermostability is due to large C-vP bias. Analysis of pre-23S substrate variants reveals a dependence of reactivity on the base-pair (bp) sequence in the proximal box (pb), a site of protein contact that functions as a positive determinant of recognition of E. coli (Ec)-RNase III substrates. The pb sequence dependence of reactivity is similar to that observed with the Ec-RNase III pb. Moreover, Tm-RNase III cleaves an Ec-RNase III substrate with identical specificity, and is inhibited by pb antideterminants that also inhibit Ec-Rnase III. These studies reveal the conservation acrosss a broad phylogenetic distance of substrate reactivity epitopes, both the positive and negative determinants, among bacterial RNase III substrates. / Chemistry
28

Präparation und röntgenkristallographische Untersuchungen an archaebakteriellen Box C/D sRNPs und einer neuartigen Glukosyltransferase aus Thermotoga maritima MSB8 / Preparation and crystallographic studies of an archaebacterial box C/D sRNP complex and a novel glucosyltransferase from Thermotoga maritima MSB8

Steinke, Carmen 03 November 2004 (has links)
No description available.
29

STRUCTURAL BASIS FOR THERMAL STABILITY OF THERMOPHILIC TRMD PROTEINS

Uzzell, Jamar 25 July 2011 (has links)
Thermal stability of theG37 tRNA methyltransferase proteins from Thermotoga maritima and Aquifex aeolicus have been compared using Differential Scanning Calorimetry. It was shown that the Thermotoga protein is remarkably stable and is denatured at temperatures in excess of 100 degrees Centigrade. The Aquifex aeolicus protein was less stable, denaturing broadly at temperatures between 55oC and 100oC. In contrast, the mesophilic E. coli protein was completely denatured at 55oC. Enzymatic activity of the proteins was measured at various temperatures. Both the Thermotoga and Aquifex enzymes are active at ambient temperatures, and display a significant decrease in activity when the temperature is raised above 50oC. This may relate to subtle changes in protein structure causing an effect on the tRNA based assay. Both enzymes contain inter subunit disulfide bonds which might contribute to thermal stability. Assays of the enzymes in the presence of high concentrations of Dithiothreitol (DTT) did not significantly reduce activity at higher temperatures, but did stimulate activity at lower temperatures. Site directed mutagenesis of non -conserved protein sequences within Thermotoga maritima were initiated in order to determine what structures might confer heat stability on the protein. Alanine mutagenesis of lysine residues 103,104 led to reduced catalytic activity, but did increased activity at higher temperatures. Aspartate is the most common residue at the relative position 166 in the variable loop of most TrmD genes. It has been shown that in E. coli this is essential for catalytic activity and possibly the residue which carries out N1 deprotonation on residue G37 in tRNA. In Thermotoga glutamate is present at this position. Alanine mutagenesis of this residue did not eliminate activity suggesting another nearby residue may function in this capacity in the Thermotoga TrmD protein.
30

Versuche zur Strukturaufklärung bakterieller Thiouridin Synthetasen / Crystallization and structure determination attempts with bacterial thiouridine synthetases

Naumann, Peter-Thomas 18 January 2006 (has links)
No description available.

Page generated in 0.0381 seconds