• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 18
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 155
  • 155
  • 155
  • 47
  • 47
  • 41
  • 31
  • 27
  • 23
  • 22
  • 17
  • 16
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Evaluation and characterization of efficient organic optoelectronic materials and devices

Ho, Kai Wai 18 August 2020 (has links)
With the progression towards lighter but larger-display self-sustainable mobile devices, device efficiency becomes increasingly important, owing to the higher power display consumption but at the same time more limitation on the size and volume of energy storage. In this thesis, selected aspects regarding to efficiency of three types of optoelectronic devices, indoor photovoltaics (IPVs), perovskite thin-film transistors (TFTs) and organic light-emitting diodes (OLEDs) have been investigated. IPVs can make off-grid devices self-sustainable by harvesting ambient light energy. Its weak irradiance necessitates high-efficiency IPVs to generate sufficient power. Our work addresses the need of knowing the limit of the device parameters for correct evaluation and understanding the efficiency loss for developing clinical tactics. We delivered a general scheme for evaluating the limiting efficiency and the corresponding device parameters of IPVs under various lights, illuminance and material bandgap. In contrast to the AM1.5G conditions, a maximum power conversion efficiency (PCE) of 51-57 % can be achieved under the optimal bandgap of 1.82-1.96 eV. We also propose using the second thickness peak of interference instead of the first as a better optimal absorber thickness after identifying the finite absorption as the major source of efficiency loss. The work provides insights for device evaluation and material design for efficient IPV devices. The novel hybrid organic-inorganic perovskites have gained enormous research interest for its various excellent optoelectronic properties such as high mobility. TFT as an alternative application to the majorly focused photovoltaics is realized in this work. There are few reports on perovskite TFTs due to wetting issues. By employing polymethacrylates with ester groups and aromatic substituents which provide polar and cation-π interactions with the Pb2+ ions, quality films could be fabricated with large crystals and high electron mobility in TFTs. We further improved the performance by resolving interfacial mixing between the perovskite and the polymer using the crosslinkable SU-8, achieving the highest mobility of 1.05 cm2 V−1 s−1. Subsequently, we cured the grain boundaries using methylamine solvent vapor annealing, suppressing the TFT subthreshold swing. The work provides a map for the improvement of perovskite TFTs. It has been revealed that molecular orientations of the emitters in OLEDs with the transition dipole moment lying in plane enhances light outcoupling efficiency. Multiple experimental techniques are needed to provide complementary orientation information and their physical origin. Here, we propose using TFT to probe the orientation of the phosphorescent emitters. Homoleptic fac-Ir(ppy)3 and heteroleptic trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) were deposited on polystyrene (PS) and SiO2 substrates. Compared to the PS surface inducing isotropic orientation as the control, trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) possessed decreased carrier mobilities on SiO2. With the study of initial film growth, we infer that preferred orientation induced by the polar SiO2 surface led to an increase in energetic disorder in the well-stacked trans-Ir(ppy)2(acac) and hopping distance in the amorphous trans-Ir(ppy)2(tmd). The highly symmetric fac-Ir(ppy)3 remained its isotropic orientation despite the dipolar interaction. Surprisingly, the TFT technique gives much higher sensitivity to surface-induced orientation, and thus may potentially serve as a unique electrical probe for molecular orientation.
112

Evaluation and characterization of efficient organic optoelectronic materials and devices

Ho, Ka Wai 18 August 2020 (has links)
With the progression towards lighter but larger-display self-sustainable mobile devices, device efficiency becomes increasingly important, owing to the higher power display consumption but at the same time more limitation on the size and volume of energy storage. In this thesis, selected aspects regarding to efficiency of three types of optoelectronic devices, indoor photovoltaics (IPVs), perovskite thin-film transistors (TFTs) and organic light-emitting diodes (OLEDs) have been investigated. IPVs can make off-grid devices self-sustainable by harvesting ambient light energy. Its weak irradiance necessitates high-efficiency IPVs to generate sufficient power. Our work addresses the need of knowing the limit of the device parameters for correct evaluation and understanding the efficiency loss for developing clinical tactics. We delivered a general scheme for evaluating the limiting efficiency and the corresponding device parameters of IPVs under various lights, illuminance and material bandgap. In contrast to the AM1.5G conditions, a maximum power conversion efficiency (PCE) of 51-57 % can be achieved under the optimal bandgap of 1.82-1.96 eV. We also propose using the second thickness peak of interference instead of the first as a better optimal absorber thickness after identifying the finite absorption as the major source of efficiency loss. The work provides insights for device evaluation and material design for efficient IPV devices. The novel hybrid organic-inorganic perovskites have gained enormous research interest for its various excellent optoelectronic properties such as high mobility. TFT as an alternative application to the majorly focused photovoltaics is realized in this work. There are few reports on perovskite TFTs due to wetting issues. By employing polymethacrylates with ester groups and aromatic substituents which provide polar and cation-π interactions with the Pb2+ ions, quality films could be fabricated with large crystals and high electron mobility in TFTs. We further improved the performance by resolving interfacial mixing between the perovskite and the polymer using the crosslinkable SU-8, achieving the highest mobility of 1.05 cm2 V−1 s−1. Subsequently, we cured the grain boundaries using methylamine solvent vapor annealing, suppressing the TFT subthreshold swing. The work provides a map for the improvement of perovskite TFTs. It has been revealed that molecular orientations of the emitters in OLEDs with the transition dipole moment lying in plane enhances light outcoupling efficiency. Multiple experimental techniques are needed to provide complementary orientation information and their physical origin. Here, we propose using TFT to probe the orientation of the phosphorescent emitters. Homoleptic fac-Ir(ppy)3 and heteroleptic trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) were deposited on polystyrene (PS) and SiO2 substrates. Compared to the PS surface inducing isotropic orientation as the control, trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) possessed decreased carrier mobilities on SiO2. With the study of initial film growth, we infer that preferred orientation induced by the polar SiO2 surface led to an increase in energetic disorder in the well-stacked trans-Ir(ppy)2(acac) and hopping distance in the amorphous trans-Ir(ppy)2(tmd). The highly symmetric fac-Ir(ppy)3 remained its isotropic orientation despite the dipolar interaction. Surprisingly, the TFT technique gives much higher sensitivity to surface-induced orientation, and thus may potentially serve as a unique electrical probe for molecular orientation.
113

Silicon Phthalocyanines: Development of Structure-Property Relationships and Integration into Organic Thin-Film Transistors and Sensors

King, Benjamin 05 February 2024 (has links)
Silicon phthalocyanines (R₂-SiPcs) are an emerging class of high-performance n-type or ambipolar organic semiconductors which have found application in organic electronic devices, including organic thin-film transistors (OTFTs), organic photovoltaics (OPVs) and organic light-emitting diodes (OLEDs). Owing to their tetravalent silicon metal centre, R₂-SiPcs can be substituted with a range of axial ligands including phenols, carboxylic acids, and silanes to tune their intermolecular interactions, optical properties, electronic properties and solubility. While early reports of R₂-SiPcs have demonstrated promising results, the relationship between their structure and performance in OTFTs is poorly understood. Additionally, many OTFTs with R₂-SiPcs as semiconductor only demonstrate n-type behaviour under inert atmospheres due to their shallow lowest unoccupied orbital level below -4.1 eV making them susceptible to electron trapping by moisture and oxygen. This thesis presents developments in both the understanding of how R₂-SiPc structure influences performance, device engineering and exploration of these materials in ammonia sensors. First, I develop of structure-property relationships for a catalogue of fifteen R₂-SiPcs integrated into OTFTs including eleven materials used in OTFTs for the first time. I then explore the influence of dielectric surface chemistry on the texture of R₂-SiPc films and their resulting performance in OTFTs using silane self-assembled monolayers and para-sexiphenyl to understand the weak epitaxial growth behaviour of this class of materials. Next, I report eight novel peripherally fluorinated and axially substituted silicon phthalocyanines (R₂-FₓSiPcs) to investigate the influence of peripheral and axial fluorination on air-stable electron transport and determine the threshold for achieving air-stable n-type OTFTs. Finally, I integrate R₂-FₓSiPcs into organic heterojunction ammonia gas sensors to understand the influence of peripheral fluorination on the majority charge carrier in this device architecture.
114

ORGANIC ELECTRONIC DEVICES USING CROSSLINKED POLYELECTROLYTE MULTILAYERS AS AN ULTRA-THIN DIELECTRIC MATERIAL

STRICKER, JEFFERY T. January 2006 (has links)
No description available.
115

MATERIAL DESIGN AND INTERFACIAL ENGINEERING FOR HIGH-PERFORMANCE ORGANIC THIN FILM TRANSISTORS

Liu, Ping 04 1900 (has links)
<p>Organic thin film transistors (OTFTs) have attracted great attention in the last couple of decades due to their potential of cost reductions in manufacturing low-end electronic devices through solution processes. Currently, one of the major challenges facing the field of OTFTs is lack of high performance functional organic materials including both organic semiconductors and gate dielectrics for effective device integrations by solution deposition technologies. This thesis focuses on material designs, interfacial compatibilities, and device integrations for high performance OTFTs.</p> <p>Research progresses in the following areas are presented in this thesis. First, novel liquid-crystalline organic semiconductors, 2,5‟-bis-[2-(4-pentylphenyl)vinyl]-thieno(3,2-</p> <p><em>b</em>) thiophene and 2,5‟-bis-[2-(4-pentylphenyl)vinyl]-(2,2‟)bithiophene for OTFT applications were developed. Mobilities of the OTFTs fabricated from these semiconductors reached 0.15 cm2/V.s with high environmental stability. Such high performance is attributed to their ability to form highly ordered molecular structures. Second, a simple effective approach was developed for tuning solubility of a high mobility polythiophene system through engineering its molecular structure. OTFTs fabricated with the newly developed copolythiophenes from an environmentally benign non-chlorinated solvent showed excellent performance with mobility up to 0.18 cm2/V.s. Third, an effective approach to a solution processed gate dielectric Ph.D. Thesis – P. Liu, McMaster University, Chemical Engineering iv</p> <p>design was developed for all solution-processed flexible OTFTs. This was achieved through a dual-layer dielectric structure design comprised of a bottom layer with a UV-crosslinked poly(4-vinyl phenol-co-methyl methacrylate), (PVP-PMMA), and a top layer with a thermally crosslinked polysiloxane. This solution-processed dual-layer dielectric structure enabled all solution-processed high performance flexible OTFTs. Finally, flexible OTFTs were successfully integrated on plastic substrates (PET) from non-chlorinated solvents by using the copolythiophenes and the dual-layer dielectric. The integrated flexible devices showed good OTFT characteristics with mobility up to about 0.1 cm<sup>2</sup>/V.s.,</p> <p>well defined linear and saturated regions, and a close to zero turn-on voltage.</p> / Doctor of Philosophy (PhD)
116

Amorphous oxide semiconductor thin-film transistor ring oscillators and material assessment

Sundholm, Eric Steven 28 June 2010 (has links)
Amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this thesis. Within this theme, three primary areas of focus are pursued. The first focus is the realization of a transparent three-stage ring oscillator with buffered output and an output frequency in the megahertz range. This leads to the possibility of transparent radio frequency applications, such as transparent RFID tags. At the time of its fabrication, this ring oscillator was the fastest oxide electronics ring oscillator reported, with an output frequency of 2.16 MHz, and a time delay per stage of 77 ns. The second focus is to ascertain whether a three-terminal device (i.e., a TFT) is an appropriate structure for conducting space-charge-limited-current (SCLC) measurements. It is found that it is not appropriate to use a diode-tied or gate-biased TFT configuration for conducting a SCLC assessment since square-law theory shows that transistor action alone gives rise to I proportional to V² characteristics, which can easily be mistakenly attributed to a SCLC mechanism. Instead, a floating gate TFT configuration is recommended for accomplishing SCLC assessment of AOS channel layers. The final focus of this work is to describe an assessment procedure appropriate for determining if a dielectric is suitable for use as a TFT gate insulator. This is accomplished by examining the shape of a MIM capacitor's log(J)-ξ curve, where J is the measured current density and ξ is the applied electric field. An appropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that expresses a clear breakover knee, indicating a high-field conduction mechanism dominated by Fowler-Nordheim tunneling. Such a dielectric produces a TFT with a minimal gate leakage which does not track with the drain current in a log(I[subscript D])-V[subscript GS] transfer curve. An inappropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that does not express a clear breakover knee, indicating that the dominate conduction mechanism is defect driven (i.e., pin-hole like shunt paths) and, therefore, the dielectric is leaky. It is shown that experimental log(J)-ξ leakage curves can be accurately simulated using Ohmic, space-charge-limited current (SCLC), and Fowler-Nordheim tunneling conduction mechanisms. / Graduation date: 2010
117

Electrical Analysis and Physical Mechanisms of Low-Temperature Polycrystalline-Silicon and Amorphous Metal-Oxide Thin Film Transistors for Next Generation Flat Panel Display Application

Chen, Te-Chih 02 July 2012 (has links)
In order to meet the requests of the application as pixel switch and current driver in next generation active-matrix liquid crystal displays (AMLCD) and active-matrix organic light-emitting diodes (AMOLED). The materials of low temperature poly-silicon (LTPS) and metal-oxide are supposed to be the most potential material for active layer of thin-film transistors (TFTs) due to their high mobility compared to the traditional amorphous silicon TFTs. Therefore, in order to make the LTPS TFTs and metal-oxide TFTs affordable for the practical applications, the understanding of instability and reliability is critically important. In the first part, we studied the nonvolatile memory characteristics of polycrystalline-silicon thin-film-transistors (poly-Si TFTs) with a silicon-oxide-nitride-oxide-silicon (SONOS) structure. As the device was programmed, significant gate induced drain leakage current was observed due to the extra programmed electrons trapped in the nitride layer which. In order to suppress the leakage current and thereby avoid signal misidentification, we utilized band-to-band hot hole injection method to counteract programmed electrons and this method can exhibit good sustainability because the injected hot holes can remain in the nitride layer after repeated operations. On the other hand, we also investigated the degradation behavior of SONOS-TFT under off-state stress. After the electrical stress, the significant on-state degradation indicates that the interface states accompanied with hot-hole injection. Moreover, the ISE-TCAD simulation tool was utilized to model the degradation mechanism and analyze trap states distribution. Furthermore, we also performed the identical off-state stress for the device with different memory states. The different degradation behavior under different memory states is attributed to the different overlap region of injected holes and trap states. In the second part, the degradation mechanism of indium-gallium-zinc oxide (IGZO) thin film transistors (TFTs) caused by gate-bias stress performed in the dark and light illumination was investigated. The parallel threshold voltage indicates that charge trapping model dominates the degradation behavior under positive gate-bias stress. However, the degradation of negative gate bias stress is much slighter than the positive gate bias stress since the IGZO material is hard to induced hole inversion layer. In addition, the hole mobility is much lower than electron resulting in ignorable hole trapping effect. On the other hand, the identical positive and negative gate bias stress performed under light illumination exhibit opposite degradation behavior compared with dark stress. This degradation variation under dark and light illumination can be attributed to the effectively energy barrier variation of electron and hole trapping. Furthermore, to further investigate the light induced instability for IGZO TFTs, the device with and without a SiOx passivation were investigated under light illumination. The experiment results indicate that oxygen adsorption and desorption dominate the light induced instability for unpassivated device and the trap states caused during the passivation layer deposition process will induce apparent subthreshold photo-leakage current under light illumination. In the third part, we investigated the degradation mechanism of IGZO TFTs under hot-carrier and self-heating stress. Under hot-carrier stress, except the electron trapping induced positive Vt shift, an apparent on-current degradation behavior indicates that trap states creation. On the other hand, the identical hot-carrier stress performed in the asymmetric source/drain structure exhibits different degradation behavior compared with symmetric source/drain structure. For asymmetric structure, the strong electrical field in the I-shaped drain electrode will induce channel hot electron injection near the drain side and cause asymmetric threshold voltage degradation. In this part we also investigated the degradation behavior under self-heating stress. The apparent positive threshold voltage (Vt) shift and on-current degradation indicate that the combination of trap states generation and electron trapping effect occur during stress. The trap states generation is caused by the combination of Joule heating and the large vertical field. Moreover, the Joule heating generated by self-heating operation can enhance electron trapping effect and cause larger Vt shift in comparison with the gate-bias stress. Finally, the electrical properties and photo sensitivity of dual gate IGZO TFTs were investigated. The asymmetric electrical properties and photo sensitivity under top gate and bottom gate operation is attributed to the variation of gate control region. Furthermore, the obvious asymmetric photo sensitivity can be utilized to the In-cell touch panel technology and lower the process cost compared with the traditional a-Si TFTs due to the elimination of black matrix.
118

IMIDE-FUNCTIONALIZED CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES

Guo, Xugang 01 January 2009 (has links)
Organic semiconductors are widely studied as potential active components for consumer electronics due largely to their easily tuned properties and the promise of lower-cost solution-based processing technology. Imide-functionalized organic small molecule compounds have been one of the more important and studied organic semiconductors. However, very few imide-functionalized conjugated polymers have been reported in the literature. The body of this dissertation focuses on the synthesis, structure-property and device studies of imide-functionalized conjugated polymers. Reasons for choosing arylene imides as polymer building blocks include: a) they impart low-lying LUMOs to polymers, allowing band-gap engineering through choice of comonomers with variable electron-donating ability; b) imide-nitrogens provide points to attach side chains to manipulate solubility and solid-state packing; c) they are easily prepared. Structure-property studies include electrochemical measurements, UV-Vis absorption spectroscopy, differential scanning calorimetry (DSC), x-ray diffraction, and in some cases evaluation as active components in field-effect transistors (OFETs) and photovoltaic devices (PVDs). The published method to synthesize 3,6-dibromo-pyromellitic bisimides (PMBI) was streamlined and poly(phenylene ethynylene)s (PPEs) with variable band gaps were prepared from them (Chapter 2). As noted in all the chapters, electrochemical and optical measurements reveal that the LUMO of the polymers is indeed dictated by the arylene imide, while the HOMO, and therefore the optical energy gap is controlled through varying the electron donor monomer. Intramolecular hydrogen bonding was employed for increasing backbone coplanarity and therefore the polymer could have higher conjugation. One of these polymers demonstrated the narrowest band gap (1.50 eV) for any published PPE. Chapter 3 describes the first published conjugated copolymers from naphthalene bisimides (NBI), here using thiophene-based comonomers as donor units. Polymers with high molecular weight and decent solubility were obtained by choosing appropriate side chains. The optical energy gaps could be tuned across the visible and into the near IR. Preliminary OFET studies revealed electron mobility as high as ~0.01 cm2/Vs. One low band gap polymer provided OFETs with electron mobility of ~0.04 cm2/Vs and hole mobility of ~0.003 cm2/Vs, which is also among the highest mobilities of ambipolar polymeric semiconductors. Using the same approach as in Chapter 3, phthalimide-based monomers were incorporated into polymer backbones for developing new high performance p-type polymer semiconductors for OFETs and PVDs (Chapter 4). Some analogues based on benzothiadiazole, PMBI, and thiophene imides as acceptors were prepared for comparison. Again, high molecular weight, soluble polymers with band gaps spanning the visible and into the near IR were obtained. OFETs from one of the polymers yielded hole mobility ~0.3 cm2/Vs under ambient atmosphere without post-processing thermal annealing, which places it squarely within the state-of-the-art for conjugated polymers. Due to the high mobility and low band gap, this polymer also leads to PVDs with moderately good power conversion efficiency (PCE: ~2%).
119

OPTIMIZATION OF THE OPTICAL AND ELECTROCHEMICAL PROPERTIES OF DONOR-ACCEPTOR COPOLYMERS THROUGH FUNCTIONAL GROUP AND SIDE CHAIN MODIFICATION

Seger, Mark J. 01 January 2013 (has links)
Donor-acceptor copolymers have received a great deal of attention for application as organic semiconductors, in particular as the active layers in low-cost consumer electronics. The functional groups grafted to the polymer backbones generally dictate the molecular orbital energies of the final materials as well as aid in self-assembly. Additionally, the side chains attached to these functional groups not only dictate the solubility of the final materials, but also their morphological characteristics. The bulk of the research presented in this dissertation focuses on the synthesis and structure-property relationships of polymers containing novel acceptor motifs. Chapter 2 focuses on the synthesis of 1,2-disubstituted cyanoarene monomers as the acceptor motif for copolymerization with known donors. It was found that cyanation of both benzene and thiophene aromatic cores resulted in a decrease of the molecular orbital energy levels. Additionally, the small size of this functional group allowed favorable self-assembly and close π-stacking to occur relative to related acceptor cores carrying alkyl side chains as evidenced by UV-Vis and WAXD data. Chapter 3 describes the systematic variation of side chain branching length and position within a series of phthalimide-based polymers. Branching of the side chains on bithiophene donor units resulted in the expected increase in solubility for these materials. Furthermore, a correlation was found between the branching position, size, and the HOMO energy levels for the polymers. Additionally, it was demonstrated that branching the alkyl side chains in close proximity to polymer backbones does not disrupt conjugation in these systems. A novel acceptor motif based on the 1,3-indanedione unit is presented in Chapter 4. Despite the stronger electron withdrawing capability of this functional group relativeto phthalimide, it was found that polymers based on this unit have the same HOMO molecular orbital energy levels as those presented in Chapter 3. It was found, however, the presence of orthogonal side chains greatly enhanced the solubility of the final polymers. Additionally, UV-Vis and WAXD measurements revealed that thermal annealing had a profound effect on the ordering of these polymers. Despite the presence of orthogonal side chains, long range order and close π-stacking distances were still achieved with these materials. Finally, alkynyl “spacers” were used in Chapter 5 to separate the solubilizing alkyl side chains from the polymer backbones on bithiophene donor monomers. The alkynyl groups allowed for conjugated polymer backbones to be achieved as well as low HOMO energy levels. A correlation between the side chain size, π-stacking distances and HOMO-LUMO energy levels was measured in this polymer series.
120

Development, fabrication, and characterization of transparent electronic devices

Hoffman, Randy L. 05 June 2002 (has links)
The objective of this thesis is to provide an initial demonstration of the feasibility of constructing highly transparent active electronic devices. Such a demonstration is successfully achieved in the fabrication of ZnO-based thin film transistors (TFTs) exhibiting transparency greater than ~90% in the visible portion of the electromagnetic spectrum and prototypical n-channel, enhancement mode TFT characteristics. Electrical characterization studies of these ZnO-based transparent TFTs and of CuYO��� / ZnO / ITO p-i-n heterojunction diodes serve to elucidate the mechanisms responsible for the behavior of these devices in particular, and of transparent electronic devices in general. Energy band analysis of the degenerate semiconductor / insulator heterojunction yields insight into the phenomenon of charge injection into an insulator, with important implications for the analysis of devices containing heterojunctions of this nature. Finally, a novel technique for simultaneously characterizing carrier injection into an insulator and interface channel formation, the capacitance-(voltage, frequency) [C-(V,f)] technique, is proposed and employed in the characterization of ZnO-based TFT structures. / Graduation date: 2003

Page generated in 0.103 seconds