• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quench-induced dynamic breakdown strength of liquid helium for superconducting coils

Chigusa, S., Hayakawa, N., Okubo, H. 03 1900 (has links)
No description available.
2

Enhanced Dielectric Properties of Micro and Nanolayered Films for Capacitor Applications

Mackey, Matthew E. 26 June 2012 (has links)
No description available.
3

Enhanced Dielectric Properties of Micro and Nanolayered Films for Capacitor Applications

Mackey, Matthew 26 June 2012 (has links)
No description available.
4

ORGANIC ELECTRONIC DEVICES USING CROSSLINKED POLYELECTROLYTE MULTILAYERS AS AN ULTRA-THIN DIELECTRIC MATERIAL

STRICKER, JEFFERY T. January 2006 (has links)
No description available.
5

Study of electrical strength and lifetimes of polymeric insulation for DC applications

Iddrissu, Ibrahim January 2016 (has links)
Polymeric insulating materials are being re-evaluated in the context of the re-emergence of HVDC and its advantages in bulk power transfer over long distances. This has been met with new sets of requirement such as; the use of polymeric insulation, compaction of HV equipment (e.g. HV cables), and innovations in converter technology. This equipment requires high power rating and hence will be exposed to high electric stresses. One of the properties of polymeric DC insulation is its ability to retain injected charges at high DC fields leading to local field modification and subsequent breakdown of the insulation through electrical treeing. Electrical treeing is one of the important failure mechanisms of solid polymeric insulations resulting from high voltage stresses and a precursor to failure of electrical equipment. Hence, the performance and reliability of polymeric insulation designs will be affected by electrical treeing. Literature shows that electrical trees initiate easily with switching voltages such as impulses, voltage surges and reversal of power flow direction. Innovations in converter technology employs fast switching devices such as insulated gated bipolar transistors (IGBTs) which generates substantial amount of harmonics and may also impact insulation systems reliability. This research investigates the reliability of epoxy resin (LH/HY 5052) for suitability in HVDC applications due to its excellent properties as jointing compound in medium and high voltage cables systems. The development of test facilities for short term breakdown strength, space charge measurement and electrical treeing experiment have allowed short term breakdown strength on homogeneous layers of thin epoxy-epoxy samples and long term breakdown through electrical treeing under DC, AC and AC superimposed on DC to be investigated so that an understanding of the link between space charge, material strength and life times can be clarified. The results on short term breakdown showed the layered samples have 6% reduction in strength compared to un-layered samples. For long term treeing test, 100% of the samples stressed with negative DC did not fail while 67% of the sample stressed with positive DC failed with average lifetime of 250 minutes. Samples stressed under AC showed forward and reverse directions of tree growth with average lifetime of 143 minutes from 70% failed samples. For AC superimposed on ±DC all samples failed with average lifetimes of 54 and 78 minutes for positive and negative bias tests, respectively. It is concluded that, the differences in lifetime obtained under positive and negative pure DC tests and that of the positive and negative DC bias tests are associated with space charge causing field relief under negative DC and negative bias tests. The huge reduction in lifetimes under AC superimposed on DC as ripples tests highlights the potential threat of power quality issues on the reliability of DC systems. Electrical tree growth from the ground planer electrode (reverse tree) observed under AC test was associated with relatively low voltage under AC test compared with the other tests see Table 8-1 for test voltages employed.
6

Mechanisms of Electrical Ageing of Oilimpregnated Paper due to Partial Discharges

Ghaffarian Niasar, Mohamad January 2015 (has links)
In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. In this thesis, partial discharge (PD) phenomenon in oil-impregnated paper (OIP) is investigated under accelerated electrical stress. The thesis is mainly focused on the characteristic of PD activity and the influence it has on the insulation properties of OIP. PD source was created by introducing an air filled cavity embedded between layers of OIP. PD activity is investigated from the initiation up to final puncture breakdown of the OIP. The time-evolution of number, maximum magnitude and average magnitude of PD is investigated for cavities with different diameter and height. It was found that time to breakdown is shorter if the cavity diameter is larger and cavities with higher depth produce larger PDs. Comparison between PD activity in three cases, i.e. unaged OIP, thermally aged OIP and OIP samples with higher moisture content is performed. In general, it is found that for all cases the number and the maximum magnitude of PD follows a similar trend versus ageing time. During the very beginning of the experiment large discharges occur and they disappear after a short ageing time. Number and maximum magnitude of PD increase with time until reaching a peak value. Finally both parameters decrease with time and puncture breakdown occurs in the sample. Even though PD activity in thermally aged OIP is higher compared to the unaged OIP samples, the time to breakdown for new and thermally aged OIP samples is similar while it is shorter for OIP samples with higher moisture content. Breakdown strength of OIP samples is measured before and after ageing with PDs. It is found that the breakdown strength of OIP samples decreases by around 40% after the sample is exposed to accelerated electrical ageing. Furthermore a thermal model was developed to investigate the possible transition of breakdown mechanism from erosion to thermal breakdown in OIP dielectrics. It was found that PD activity can lower the thermal breakdown voltage of OIP up to four times. / <p>QC 20150206</p>
7

Electrical Insulating Properties of Poly(Ethylene-co-Butyl Acrylate) Filled with Alumina Nanoparticles

Jäverberg, Nadejda January 2013 (has links)
In this work the electrical insulating properties of the nanocomposite materials based on poly(ethylene-co-butyl acrylate) filled with alumina nanoparticles are studied. The dielectric properties chosen for the evaluation are the dielectric permittivity and loss as well as the breakdown strength and the pre-breakdown currents. The reason for choosing these particular properties is partly due to the importance of these for the general electrical applications and partly due to the uncertainties involved for these particular properties of the nanocomposite materials. The importance of moisture absorption for the dielectric properties is outlined in this work. All measurements were performed in both dry conditions and after conditioning of the materials in humid environment until saturation. The data for moisture absorption was taken from the water absorption study performed at the Department of Fibre and Polymer Technology, KTH. The dielectric spectroscopy in frequency domain was employed for measuring dielectric permittivity and loss. Havriliak-Negami approximation was used for characterization of the measurement data and at the same time ensuring the fulfillment of the Kramers-Kronig relations. Results from the dielectric spectroscopy study in dry conditions suggest that dielectric spectroscopy can be used for evaluating nanoparticle dispersion in the host matrix, based on correlation between the morphology data obtained from SEM investigation and the scatter in the dielectric loss. The dielectric spectroscopy study performed on the nanocomposites after conditioning in humid environment showed that absorbed moisture has a distinct impact on the dielectric loss. Especially pronounced is its’ influence on the frequency behavior, when the dielectric loss peaks are shifted towards higher frequencies with increased moisture content. The nanocomposite materials characterized by higher specific surface area generally exhibit higher dielectric losses. Surface functionalization of the nanoparticles does not seem to have much influence on the dielectric loss in dry conditions. After conditioning in humid environment, however, the surface modification was shown to have a significant impact. Temperature is another significant factor for the frequency behavior of the dielectric loss: it was found that the studied nanocomposites can be characterized by Arrhenius activation. The breakdown strength and pre-breakdown currents study outlined the influence of moisture as well. The study indicated that surface treatment of the nanoparticles can enhance properties of the nanocomposite materials, namely aminopropyltriethoxy silane was an especially successful choice: • The highest breakdown strength was determined by the study for NDA6 material formulation in dry conditions. • After conditioning in humid environment the NDA6 material continued showing the best breakdown strength among the nanocomposite mate rials, as well as this value was close to the breakdown strength of the reference unfilled material. This study confirms the existence of the optimal nanofiller content or rather optimal specific surface area of the dispersed nanoparticles in the host matrix. The latter is supported by the comparison between the nanocomposites based on nanoparticles with two different specific surface areas, which shows that the dielectric properties worsen, i.e. the dielectric losses increase and the influence of absorbed moisture on the breakdown strength becomes more pronounced, for nanomaterials with larger specific surface area. The pre-breakdown currents were found to follow space-charge limited conduction mechanism reasonably well. The following conduction regimes were identified: constant region (likely due to measurement difficulties at low field strengths), Ohm’s regime, trap-filled-limit regime and trapfree dielectric regime. The breakdown usually occurred either during the trap-filled-limit regime, when the current increased dramatically for the small change in electric field, or during the trapfree dielectric regime. The threshold values between different conduction regimes seem to correlate well with the oxidation induction times (OIT), which in turn depend on the total specific surface area. The pre-breakdown currents tend to be highest for the materials filled with the untreated nanoparticles. Increased absorbed moisture content causes higher pre-breakdown currents for the nanocomposite materials, while for the reference unfilled material the pre-breakdown currents do not show such tendency. Generally it can be said that the repeatability in the measured data is higher for the nanocomposite materials in comparison to the unfilled host material, as was demonstrated by both dielectric spectroscopy and breakdown studies. / <p>QC 20130207</p>
8

Etude des propriétés électriques et thermiques de matériaux composites à matrice époxy-anhydride pour l'isolation haute tension / Study of electrical and thermal properties of epoxy-anhydride composite materials for high voltage insulation

Desmars, Loriane 02 April 2019 (has links)
L’avènement des énergies renouvelables, notamment offshore, et la nécessité de transporter l’électricité sur des distances toujours plus grandes tout en réduisant les pertes en ligne requièrent la mise en place d’un nouveau réseau électrique plus performant, le supergrid. L’amélioration des sous-stations ultra haute tension en courant alternatif (UHVAC) de type poste sous enveloppe métallique (PSEM), i.e. la réduction de leur empreinte au sol ou leur montée en tension, s’inscrit parmi les défis engendrés par le développement du supergrid. L’amélioration de la tenue aux contraintes électrothermiques des isolants solides employés dans les PSEM a été identifiée comme le principal verrou technologique pour le perfectionnement de ces appareillages, déjà pleinement maîtrisés en HVAC. Les travaux présentés dans ce manuscrit ont été motivés par la nécessité de développer un matériau isolant électrique plus performant que les matériaux existant actuellement sur le marché. L’un des matériaux couramment employés pour la fabrication d’isolants solides pour PSEM, une matrice époxy-anhydride chargée d’alumine micrométrique, a servi de référence commerciale à notre étude. Suite à une étude bibliographique, nous avons choisi de conserver la matrice époxy du système commercial de référence et de jouer sur les charges inorganiques employées pour optimiser les propriétés du matériau isolant. Les travaux présentés mettent en évidence l’influence de la nature des charges inorganiques (alumine ou nitrure de bore hexagonal), de leur facteur de forme (quasi sphérique ou lamellaire) et de leur fraction volumique sur la conductivité thermique, le coefficient d’expansion thermique, les propriétés mécaniques dynamiques, les propriétés diélectriques, la conductivité électrique à haute tension (DC) et la rigidité diélectrique (AC) des matériaux composites. L’étude expérimentale des relations structure-propriétés est complétée par un travail de modélisation des propriétés diélectriques et de la conductivité thermique des matériaux composites. / The integration of renewable energies to the power grid requires its modification in order to ensure its stability, security and efficiency. Improving ultra-high voltage alternative current (UHVAC) gas insulated substations (GIS), e.g. reducing their size or increasing their voltage, is one of the challenges induced by the development of the future power grid, the supergrid. Increasing the ability of solid insulators used in such equipment to withstand electro-thermal stress has been identified as the main obstacle to overcome. The work presented in this manuscript has been motivated by the necessity to develop more efficient electrical insulating materials compared to commercially available ones. An epoxy-anhydride matrix filled with micron sized alumina, often used to produce GIS solid insulators, has been used as a reference for this study. We decided to keep the matrix of the reference material throughout our work and to concentrate on the filler influence in order to optimize the properties of the composites. The impact of the nature of the filler (alumina or hexagonal boron nitride), its shape factor (platelets or almost spherical particles) and its volume fraction upon thermal conductivity, coefficient of thermal expansion, dynamic mechanical properties, dielectric properties, high voltage direct current (DC) conductivity and AC breakdown strength have been highlighted. The experimental study of structure-property relationships is completed by dielectric properties and thermal conductivity modelling using the effective medium theory.

Page generated in 0.08 seconds